990 resultados para Control constraints
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
The presented work focuses on the theoretical and practical aspects concerning the design and development of a formal method to build a mission control system for autonomous underwater vehicles bringing systematic design principles for the formal description of missions using Petri nets. The proposed methodology compounds Petri net building blocks within it to de_ne a mission plan for which it is proved that formal properties, such as reachability and reusability, hold as long as these same properties are also guaranteed by each Petri net building block. To simplify the de_nition of these Petri net blocks as well as their composition, a high level language called Mission Control Language has been developed. Moreover, a methodology to ensure coordination constraints for teams of multiple robots as well as the de_nition of an interface between the proposed system and an on-board planner able to plan/replan sequences of prede_ned mission plans is included as well. Results of experiments with several real underwater vehicles and simulations involving an autonomous surface craft and an autonomous underwater vehicles are presented to show the system's capabilities.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.
Resumo:
This paper introduces PSOPT, an open source optimal control solver written in C++. PSOPT uses pseudospectral and local discretizations, sparse nonlinear programming, automatic differentiation, and it incorporates automatic scaling and mesh refinement facilities. The software is able to solve complex optimal control problems including multiple phases, delayed differential equations, nonlinear path constraints, interior point constraints, integral constraints, and free initial and/or final times. The software does not require any non-free platform to run, not even the operating system, as it is able to run under Linux. Additionally, the software generates plots as well as LATEX code so that its results can easily be included in publications. An illustrative example is provided.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
This paper introduces a new fast, effective and practical model structure construction algorithm for a mixture of experts network system utilising only process data. The algorithm is based on a novel forward constrained regression procedure. Given a full set of the experts as potential model bases, the structure construction algorithm, formed on the forward constrained regression procedure, selects the most significant model base one by one so as to minimise the overall system approximation error at each iteration, while the gate parameters in the mixture of experts network system are accordingly adjusted so as to satisfy the convex constraints required in the derivation of the forward constrained regression procedure. The procedure continues until a proper system model is constructed that utilises some or all of the experts. A pruning algorithm of the consequent mixture of experts network system is also derived to generate an overall parsimonious construction algorithm. Numerical examples are provided to demonstrate the effectiveness of the new algorithms. The mixture of experts network framework can be applied to a wide variety of applications ranging from multiple model controller synthesis to multi-sensor data fusion.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.
Resumo:
The paper analyzes the performance of the unconstrained filtered-x LMS (FxLMS) algorithm for active noise control (ANC), where we remove the constraints on the controller that it must be causal and has finite impulse response. It is shown that the unconstrained FxLMS algorithm always converges to, if stable, the true optimum filter, even if the estimation of the secondary path is not perfect, and its final mean square error is independent of the secondary path. Moreover, we show that the sufficient and necessary stability condition for the feedforward unconstrained FxLMS is that the maximum phase error of the secondary path estimation must be within 90°, which is the only necessary condition for the feedback unconstrained FxLMS. The significance of the analysis on a practical system is also discussed. Finally we show how the obtained results can guide us to design a robust feedback ANC headset.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
A novel optimising controller is designed that leads a slow process from a sub-optimal operational condition to the steady-state optimum in a continuous way based on dynamic information. Using standard results from optimisation theory and discrete optimal control, the solution of a steady-state optimisation problem is achieved by solving a receding-horizon optimal control problem which uses derivative and state information from the plant via a shadow model and a state-space identifier. The paper analyzes the steady-state optimality of the procedure, develops algorithms with and without control rate constraints and applies the procedure to a high fidelity simulation study of a distillation column optimisation.
Resumo:
Value chain studies, including production system and market chain studies, are essential to value chain analysis, which when coupled with disease risk analysis is a powerful tool to identify key constraints and opportunities for disease control based on risk management in a livestock production and marketing system. Several production system and market chain studies have been conducted to support disease control interventions in South East Asia. This practical aid summarizes experiences and lessons learned from the implementation of such value chain studies in South East Asia. Based on these experiences it prioritizes the required data for the respective purpose of a value chain study and recommends data collection as well as data analysis tools. This practical aid is intended as an adjunct to the FAO value chain approach and animal diseases risk management guidelines document. Further practical advice is provided for more effective use of value chain studies in South and South East Asia as part of animal health decision support.
Resumo:
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.
Resumo:
The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.