924 resultados para Control Network


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian network for genotyping is composed of 21 laboratories that perform and analyze genotyping tests for all HIV-infected patients within the public system, performing approximately 25,000 tests per year. We assessed the interlaboratory and intralaboratory reproducibility of genotyping systems by creating and implementing a local external quality control evaluation. Plasma samples from HIV-1-infected individuals (with low and intermediate viral loads) or RNA viral constructs with specific mutations were used. This evaluation included analyses of sensitivity and specificity of the tests based on qualitative and quantitative criteria, which scored laboratory performance on a 100-point system. Five evaluations were performed from 2003 to 2008, with 64% of laboratories scoring over 80 points in 2003, 81% doing so in 2005, 56% in 2006, 91% in 2007, and 90% in 2008 (Kruskal-Wallis, p = 0.003). Increased performance was aided by retraining laboratories that had specific deficiencies. The results emphasize the importance of investing in laboratory training and interpretation of DNA sequencing results, especially in developing countries where public (or scarce) resources are used to manage the AIDS epidemic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During sentence processing there is a preference to treat the first noun phrase found as the subject and agent, unless marked the other way. This preference would lead to a conflict in thematic role assignment when the syntactic structure conforms to a non-canonical object-before-subject pattern. Left perisylvian and fronto-parietal brain networks have been found to be engaged by increased computational demands during sentence comprehension, while event-reated brain potentials have been used to study the on-line manifestation of these demands. However, evidence regarding the spatiotemporal organization of brain networks in this domain is scarce. In the current study we used Magnetoencephalography to track spatio-temporally brain activity while Spanish speakers were reading subject- and object-first cleft sentences. Both kinds of sentences remained ambiguous between a subject-first or an object-first interpretation up to the appearance of the second argument. Results show the time-modulation of a frontal network at the disambiguation point of object-first sentences. Moreover, the time windows where these effects took place have been previously related to thematic role integration (300–500 ms) and to sentence reanalysis and resolution of conflicts during processing (beyond 500 ms post-stimulus). These results point to frontal cognitive control as a putative key mechanism which may operate when a revision of the sentence structure and meaning is necessary

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation Department, Office of University Research, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have proposed a novel robust inversion-based neurocontroller that searches for the optimal control law by sampling from the estimated Gaussian distribution of the inverse plant model. However, for problems involving the prediction of continuous variables, a Gaussian model approximation provides only a very limited description of the properties of the inverse model. This is usually the case for problems in which the mapping to be learned is multi-valued or involves hysteritic transfer characteristics. This often arises in the solution of inverse plant models. In order to obtain a complete description of the inverse model, a more general multicomponent distributions must be modeled. In this paper we test whether our proposed sampling approach can be used when considering an arbitrary conditional probability distributions. These arbitrary distributions will be modeled by a mixture density network. Importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The effectiveness of the importance sampling from an arbitrary conditional probability distribution will be demonstrated using a simple single input single output static nonlinear system with hysteretic characteristics in the inverse plant model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we explore the practical use of neural networks for controlling complex non-linear systems. The system used to demonstrate this approach is a simulation of a gas turbine engine typical of those used to power commercial aircraft. The novelty of the work lies in the requirement for multiple controllers which are used to maintain system variables in safe operating regions as well as governing the engine thrust.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes the investigation of an adaptive method of attenuation control for digital speech signals in an analogue-digital environment and its effects on the transmission performance of a national telecommunication network. The first part gives the design of a digital automatic gain control, able to operate upon a P.C.M. signal in its companded form and whose operation is based upon the counting of peaks of the digital speech signal above certain threshold levels. A study was ma.de of a digital automatic gain control (d.a.g.c.) in open-loop configuration and closed-loop configuration. The former was adopted as the means for carrying out the automatic control of attenuation. It was simulated and tested, both objectively and subjectively. The final part is the assessment of the effects on telephone connections of a d.a.g.c. that introduces gains of 6 dB or 12 dB. This work used a Telephone Connection Assessment Model developed at The University of Aston in Birmingham. The subjective tests showed that the d.a.g.c. gives advantage for listeners when the speech level is very low. The benefit is not great when speech is only a little quieter than preferred. The assessment showed that, when a standard British Telecom earphone is used, insertion of gain is desirable if speech voltage across the earphone terminals is below an upper limit of -38 dBV. People commented upon the presence of an adaptive-like effect during the tests. This could be the reason why they voted against the insertion of gain at level only little quieter than preferred, when they may otherwise have judged it to be desirable. A telephone connection with a d.a.g.c. in has a degree of difficulty less than half of that without it. The score Excellent plus Good is 10-30% greater.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quality of services (QoS) support is critical for dedicated short range communications (DSRC) vehicle networks based collaborative road safety applications. In this paper we propose an adaptive power and message rate control method for DSRC vehicle networks at road intersections. The design objective is to provide high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method an offline simulation based approach is used to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network. The identified best configurations are then used online by roadside access points (AP) according to estimated number of vehicles. Simulation results show that this adaptive method significantly outperforms a fixed control method. © 2011 Springer-Verlag.