915 resultados para Continuous flow injection system, FIAlab 2600
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple and rapid flow-injection spectrophotometric method is reported for the determination of dipyrone in pharmaceutical formulations. The method is based on the reaction of dipyrone with ammonium molybdate in acidic medium to produce blue molybdenum, which was detected spectrophotometrically at 620 nm. The analyte was determined in a single-line flow system. The calibration curve obtained was linear in the range of 5x10(-4) to 8x10(-3) mol L-1 for dipyrone concentration and the precision ( s r =1.7%) was satisfactory. The method proved to be selective and adequately sensitive. Application of the method to the analysis of pharmaceutical samples resulted in excellent accuracy; the percent mean recoveries were in the range 95.3%-101% and relative errors less than 5.0% for five pharmaceutical formulations were found.
Resumo:
A flow-injection (FI) spectrophotometric procedure exploiting merging zones is proposed for the determination of azithromycin in pharmaceutical formulations. The method is based on the reaction of azithromycin with tetrachloro-phenzoquinone (p-chloranil) accelerated by hydrogen peroxide and conducted in a methanol medium, producing a purple-red color compound (lambda(max) = 540 nm). The FI system and the experimental conditions were optimized using a multivariate method. Beer's law is obeyed in a concentration range of 50 - 1600 mu g mL(-1) with an excellent correlation coefficient (r = 0.9998). The detection limit and the quantification limit were 6.6 and 22.1 mu g mL(-1), respectively. No interference was observed from the common excipients, and the recoveries were within 98.6 to 100.4%. The procedure was applied to the determination of azithromycin in pharmaceuticals with a high sampling rate (65 samples h(-1)). The results obtained by the proposed method were in good agreement with those obtained by the comparative method at 95% confidence level.
Resumo:
Droplets formed at the tip of a tube under the same conditions possess extreme uniformity of form, volume and weight. These properties of liquid drop formation have been known for a long time and consequently many applications for the drop have been found in instrumentation and chemical analysis methods. In the present paper, we report on the analytical use of a dynamic LED-based flow-through optical absorption detector with optical path length controlled by continuous dropping of a solution. This arrangement consists of a flow cell built within a high-intensity red LED (lambda (max)=630 nm). The feasibility of the detector is demonstrated by colorimetric determination of methylene blue, and ammonium by Berthelot's reaction, in a flow-injection system. For ammonium, the reaction forms a blue dye (indophenol) with a maximum absorption at 630-650 nm. The detection limit, considered as 3 times the signal of the blank, is better than 125 mu g l(-1). The small flow cell represents a good combination of optical path length, low volume and fast washout. This detector can be used advantageously in automated methods and can represent a solution to problems of optical detection involving gas bubbles and precipitation of particles in turbidimetric applications.
Resumo:
A potentiometric sensor constructed from a mixture of 25% (m/m) spinel-type manganese oxide (lambda-MnO2), 50% (m/m) graphite powder and 25% (m/m) mineral oil is used for the determination of lithium ions in a flow injection analysis system. Experimental parameters, such as pH of the carrier solution, flow rate, injection sample volume, and selectivity for Li+ against other alkali and alkaline-earth ions and the response time of this sensor were investigated. The sensor response to lithium ions was linear in the concentration range 8.6 x 10(-5) - 1.0 x 10(-2) mol L-1 with a slope 78.9 +/- 0.3 mV dec(-1) over a wide pH range 7 - 10 (Tris buffer), without interference of other alkali and alkaline-earth metals. For a flow rate of 5.0 mL min(-1) and a injection sample volume of 408.6 muL, the relative standard deviation for repeated injections of a 5.0 x 10(-4) mol L-1 lithium ions was 0.3%.
Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode
Resumo:
The PB film-modified electrode was used as an amperometric detector for flow injection analysis of ascorbic acid. The modified electrode detector showed good sensitivity, stability and reproducibility. The calibration curve for ascorbic acid was linear over the concentration range from 5.0 x 10(-6) to 1.0 x 10(-3) mol l(-1) with a slope of 19.9 mA mol(-1) per litre and a correlation coefficient of 0.999. The detection limit of this method was 2.49 x 10(-6) mol l(-1). The relative standard deviation of six replicate injections of 2.5 x 10(-4) mol l(-1) ascorbic acid was 2.5%. The results obtained for ascorbic acid determination in pharmaceutical products are in good agreement with those obtained by using the procedure involving the reaction between triiodide and ascorbic acid. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A reversible intermittent pow-injection procedure is proposed for the automated determination of mercury in sediments and vinasses by cold vapor atomic absorption spectrometry, CVAAS. Solutions of sample and stannous chloride are carried by two air streams and sequentially injected into the generator/separator chamber in a segmented asynchronous merging zone configuration. The intermittent flow in the forward direction carries the mercury vapor through the flow cell, and in the backward direction, if aspirates the the remaining solution from the vessel to waste. We investigated composition and concentration of reagents, pow rates, commutation times, reactor configuration, and conditions for mercury release. The accuracy was checked by mercury determination in a certified sediment and spiked vinasses and river waters. The system handles about 100 samples per hour (0.50-5.00 mu g L-1), consuming ca. 2.5 mL of sample and 50 mg of SnCl2 per determination; Good recoveries (92-103%) were obtained with spiked samples. Results are precise (RSD <3% for 2.5 mu g Hg L-1, n = 12) and in agreement with values for certified reference material at 95% confidence level. (C) 1999 John Wiley & Sons, Inc.
Resumo:
A sensor based on graphite electrode modified with palladium-platinum-palladium film is proposed for phosphite determination by flow-injection amperometry. The modified electrode was prepared by a sequential cathodic deposition of Pd, Pt and Pd on a graphite electrode from 0.5% m/v PdCl2 + 28% m/v NH4OH and 2% m/v H2PtCl6 + 10% v/v H2SO4 solutions. After suitable conditioning, the electrode showed catalytic activity for phosphite oxidation when 0. 15 V was applied. The proposed system handles approximately 50 samples per hour (0.0.1 - 0.05 mol L-1 Na-2 HPO3; R-2 = 0.9997), consuming ca. 70 mu L of sample per determination. The limit of detection and amperometric sensibility were 5 X 10(-4) mol L-1 and 1.5 mA L mol(-1), respectively. The proposed method was applied to analysis of fertilizer samples without pre-treatment. Results are in agreement with those obtained by spectrophotometry and titrimetry at 95% confidence level and good recoveries (96-109%) of spiked samples were found. Relative standard deviation (n=12) of a 0.01 mol L-1 Na2HPO3 sample was 2%. The useful lifetime of modified electrode was around 220 determinations. For routine purposes it means that this electrode can be continuously used for 5 hours.
Resumo:
A new method was developed for the simultaneous determination of As, Bi, Sb, and Se by flow injection hydride generation graphite furnace atomic absorption spectrometry. An alternative two-step sample treatment procedure was used. The sample was heated (80degreesC) for 10 min in 6 M HCl to reduce Se(VI) to Se(IV), followed by the addition of 1% (m/v) thiourea solution to reduce arsenic and antimony from the pentavalent to the trivalent states.With this procedure, all analytes were converted to their most favorable and sensitive oxidation states to generate the corresponding hydrides. The pre-treated sample solution was then processed in the flow system for in situ trapping and atomization in a graphite tube coated with iridium. The impermanent modifier remained stable up to 300 firings and new coating out significant were possible wit changes in the analytical performance.The accuracy was checked for As, Bi, Sb, and Se determination in water standard reference materials NIST 1640 and 1643d and the results were in agreement with the certified values at a 95% confidence level. Good recoveries (94-104%.) of spiked mineral waters and synthetic As(V), Sb(Ill), mixtures of As(Ill), Sb(V), Se(VI), and Se(IV) were also found. Calculated characteristic masses were 32 mug As, 79 mug Bi, 35 mug Sb, and 130 pg Se, and the corresponding limits of detection were 0.06, 0.16, 0.19, and 0.59 mug L-1, respectively. The repeatability for a typical solution containing 5 mug L-1 As, Bi, Sb, and Se was in the 1-3% range.
Resumo:
An automated system with a C-18 bonded silica gel packed minicolumn is proposed for spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration. Complexes formed between arsenic(III) and ammonium diethyl dithiophosphate (ADDP) are retained on a C-18 sorbent. The eluted As-DDP complexes are merged with a 1.5% (w/v) NaBH4 and the resulting solution is thereafter injected into the hydride generator/gas-liquid separator. The arsine generated is carried out by a stream of N-2 and trapped in an alkaline iodine solution in which the analyte is determined by the arsenomolybdenum blue method. With preconcentration time of 120 s, calibration in the 5.00-50.0 mu g As l(-1) range and sampling rate of about 20 samples h(-1) are achieved, corresponding to 36 mg ADDP plus 36 mg ammonium heptamolybdate plus 7 mg hydrazine sulfate plus 0.7 mg stannous chloride and about 7 mi sample consumed per determination. The detection limit is 0.06 mu g l(-1) and the relative standard deviation (n = 12) for a typical 17.0 mu g As l(-1) sample is ca. 6%. The accuracy was checked for arsenic determination in plant materials from the NIST (1572 citrus leaves; 1573 tomato leaves) and the results were in agreement with the certified values at 95% confidence level. Good recoveries (94-104%) of spiked tap waters, sugars and synthetic mixtures of trivalent and pentavalent arsenic were also found. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.
Resumo:
A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I) in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 x 10(-4) mol L-1 to 1.1 x 10(-3) mol L-1 with a detection limit of 8.0 x 10(-5) mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 x 10(-4) mol L-1 captopril (n = 12) were obtained. The sample throughput was 40 h(-1) and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.
Resumo:
Coulometric nanotitrations were realized in a microchannel system using a continuous-flow titration technique with a triangle current-time profile. Redox and acid-base titrations were carried out on Fe(II) and nitric acid samples, respectively, with the same nanotitrator device. A linear relation between the concentration and the coulometric current transferred to the solution was found. The advantages of this universally applicable nanotitrator are fast response, low sample volume, high sensitivity, and high reproducibility as well as the convenience of handling an automated analyzer of the flow-through type.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.
Resumo:
The selective production of 2-methyltetrahydrofuran from levulinic acid has been effectively conducted using designed Cu based catalysts and compared with a commercial Pd/C system under microwave irradiation. Optimised conditions for the most active catalysts Cu-MINT (>90% conversion, 75% selectivity to MTHF) and Pd/C (78% conversion, 92% selectivity to MTHF) were further translated into a continuous flow process using the proposed catalysts to find out the deactivation of Cu-MINT under flow conditions (79 vs. 13% conversion with a switch in selectivity to products after 30 min in flow), the high stability of Pd/C (73 vs. 70% conversion at stable selectivity under analogous conditions to those of Cu-MINT) but, most importantly, different relevant pathways to valuable products from levulinic acid depending on the type of catalyst employed.