923 resultados para Continuous dynamic recrystallization
Resumo:
Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the form of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.
Resumo:
Research has shown a consistent correlation between efficacy and sport performance (Moritz, et aI., 2000). This relationship has been shown to be dynamic and reciprocal over seasons (e.g., Myers, Payment, et aI., 2004), within games (e.g., Butt, et aI., 2003), and across trials (e.g., Feltz, 1982). The purpose of the present study was to examine selfefficacy and performance simultaneously within one continuous routine. Forty-seven undergraduate students performed a gymnastic sequence while using an efficacy measure. Results indicated that the efficacy-performance relationship was not reciprocal; previous performance was a significant predictor of subsequent performance (p < .01; f3s ranged from .44 to .67). Results further revealed significant differences in efficacy beliefs between groups with high and low levels of performance [F (1,571) = 7.16,p < .01]. Findings suggest that high levels of performance within a continuous physical activity task result in higher performance scores and higher efficacy beliefs.
Resumo:
The performance of a model-based diagnosis system could be affected by several uncertainty sources, such as,model errors,uncertainty in measurements, and disturbances. This uncertainty can be handled by mean of interval models.The aim of this thesis is to propose a methodology for fault detection, isolation and identification based on interval models. The methodology includes some algorithms to obtain in an automatic way the symbolic expression of the residual generators enhancing the structural isolability of the faults, in order to design the fault detection tests. These algorithms are based on the structural model of the system. The stages of fault detection, isolation, and identification are stated as constraint satisfaction problems in continuous domains and solved by means of interval based consistency techniques. The qualitative fault isolation is enhanced by a reasoning in which the signs of the symptoms are derived from analytical redundancy relations or bond graph models of the system. An initial and empirical analysis regarding the differences between interval-based and statistical-based techniques is presented in this thesis. The performance and efficiency of the contributions are illustrated through several application examples, covering different levels of complexity.
Resumo:
Planning is a vital element of project management but it is still not recognized as a process variable. Its objective should be to outperform the initially defined processes, and foresee and overcome possible undesirable events. Detailed task-level master planning is unrealistic since one cannot accurately predict all the requirements and obstacles before work has even started. The process planning methodology (PPM) has thus been developed in order to overcome common problems of the overwhelming project complexity. The essential elements of the PPM are the process planning group (PPG), including a control team that dynamically links the production/site and management, and the planning algorithm embodied within two continuous-improvement loops. The methodology was tested on a factory project in Slovenia and in four successive projects of a similar nature. In addition to a number of improvement ideas and enhanced communication, the applied PPM resulted in 32% higher total productivity, 6% total savings and created a synergistic project environment.
Resumo:
Measured process data normally contain inaccuracies because the measurements are obtained using imperfect instruments. As well as random errors one can expect systematic bias caused by miscalibrated instruments or outliers caused by process peaks such as sudden power fluctuations. Data reconciliation is the adjustment of a set of process data based on a model of the process so that the derived estimates conform to natural laws. In this paper, techniques for the detection and identification of both systematic bias and outliers in dynamic process data are presented. A novel technique for the detection and identification of systematic bias is formulated and presented. The problem of detection, identification and elimination of outliers is also treated using a modified version of a previously available clustering technique. These techniques are also combined to provide a global dynamic data reconciliation (DDR) strategy. The algorithms presented are tested in isolation and in combination using dynamic simulations of two continuous stirred tank reactors (CSTR).
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
A novel optimising controller is designed that leads a slow process from a sub-optimal operational condition to the steady-state optimum in a continuous way based on dynamic information. Using standard results from optimisation theory and discrete optimal control, the solution of a steady-state optimisation problem is achieved by solving a receding-horizon optimal control problem which uses derivative and state information from the plant via a shadow model and a state-space identifier. The paper analyzes the steady-state optimality of the procedure, develops algorithms with and without control rate constraints and applies the procedure to a high fidelity simulation study of a distillation column optimisation.
Resumo:
Dynamic multi-user interactions in a single networked virtual environment suffer from abrupt state transition problems due to communication delays arising from network latency--an action by one user only becoming apparent to another user after the communication delay. This results in a temporal suspension of the environment for the duration of the delay--the virtual world `hangs'--followed by an abrupt jump to make up for the time lost due to the delay so that the current state of the virtual world is displayed. These discontinuities appear unnatural and disconcerting to the users. This paper proposes a novel method of warping times associated with users to ensure that each user views a continuous version of the virtual world, such that no hangs or jumps occur despite other user interactions. Objects passed between users within the environment are parameterized, not by real time, but by a virtual local time, generated by continuously warping real time. This virtual time periodically realigns itself with real time as the virtual environment evolves. The concept of a local user dynamically warping the local time is also introduced. As a result, the users are shielded from viewing discontinuities within their virtual worlds, consequently enhancing the realism of the virtual environment.
Resumo:
There are well-known difficulties in making measurements of the moisture content of baked goods (such as bread, buns, biscuits, crackers and cake) during baking or at the oven exit; in this paper several sensing methods are discussed, but none of them are able to provide direct measurement with sufficient precision. An alternative is to use indirect inferential methods. Some of these methods involve dynamic modelling, with incorporation of thermal properties and using techniques familiar in computational fluid dynamics (CFD); a method of this class that has been used for the modelling of heat and mass transfer in one direction during baking is summarized, which may be extended to model transport of moisture within the product and also within the surrounding atmosphere. The concept of injecting heat during the baking process proportional to the calculated heat load on the oven has been implemented in a control scheme based on heat balance zone by zone through a continuous baking oven, taking advantage of the high latent heat of evaporation of water. Tests on biscuit production ovens are reported, with results that support a claim that the scheme gives more reproducible water distribution in the final product than conventional closed loop control of zone ambient temperatures, thus enabling water content to be held more closely within tolerance.
Resumo:
Dynamic soundtracking presents various practical and aesthetic challenges to composers working with games. This paper presents an implementation of a system addressing some of these challenges with an affectively-driven music generation algorithm based on a second order Markov-model. The system can respond in real-time to emotional trajectories derived from 2-dimensions of affect on the circumplex model (arousal and valence), which are mapped to five musical parameters. A transition matrix is employed to vary the generated output in continuous response to the affective state intended by the gameplay.
Resumo:
Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on grain growth and recrystallization due to solute drag and particles is accounted for. During hot strip rolling of Nb steels, Nb in solid solution retards recrystallization due to solute drag and at lower temperatures strain-induced precipitation of Nb(C,N) may occur which effectively retard recrystallization. The flow stress behavior during hot rolling was calculated where the mean flow stress values were calculated using both the model and measured mill data. The model showed that solute drag has an essential effect on recrystallization during hot rolling of Nb steels.
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
A precise meaning is given to the notion of continuous iteration of a mapping. Usual discrete iterations are extended into a dynamical flow which is a homotopy of them all. The continuous iterate reveals that a dynamic map is formed by independent component modes evolving without interference with each other. An application to turbulent flow suggests that the velocity field assumes nonseparable values. © 1998 American Institute of Physics.
Resumo:
The ABE (acetone, butanol, ethanol) fermentation is characterized by its low productivity. In this paper, this issue is overcome with an innovative industrial process that employs the flash fermentation technology. The process consists of three interconnected units, as follows: fermentor, cell retention system (tangential microfiltration) and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The dynamic behaviour of the process is described by a nonlinear mathematical model with kinetic parameters determined experimentally. From simulations of the mathematical model the dynamic characteristics of the process were investigated. Analyzes of the open-loop dynamic behavior of the process, after step perturbations in the manipulated variables, determined the best control structures for the process. Copyright © 2010, AIDIC Servizi S.r.l.
Resumo:
We provide some properties for absolutely continuous functions in time scales. Then we consider a class of dynamical inclusions in time scales and extend to this class a convergence result of a sequence of almost inclusion trajectories to a limit which is actually a trajectory of the inclusion in question. We also introduce the so called Euler solution to dynamical systems in time scales and prove its existence. A combination of the existence of Euler solutions with the compactness type result described above ensures the existence of an actual trajectory for the dynamical inclusion when the setvalued vector field is nonempty, compact, convex and has closed graph. © 2012 Springer-Verlag.