989 resultados para Continental precipitation annual amplitude
Resumo:
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km**2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub-páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007-November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C-horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow.
Resumo:
The results of the International Permafrost Association's International Polar Year Thermal State of Permafrost (TSP) project are presented based on field measurements from Russia during the IPY years (2007-09) and collected historical data. Most ground temperatures measured in existing and new boreholes show a substantial warming during the last 20 to 30 years. The magnitude of the warming varied with location, but was typically from 0.5°C to 2°C at the depth of zero annual amplitude. Thawing of Little Ice Age permafrost is ongoing at many locations. There are some indications that the late Holocene permafrost has begun to thaw at some undisturbed locations in northeastern Europe and northwest Siberia. Thawing of permafrost is most noticeable within the discontinuous permafrost domain. However, permafrost in Russia is also starting to thaw at some limited locations in the continuous permafrost zone. As a result, a northward displacement of the boundary between continuous and discontinuous permafrost zones was observed. This data set will serve as a baseline against which to measure changes of near-surface permafrost temperatures and permafrost boundaries, to validate climate model scenarios, and for temperature reanalysis.
Resumo:
A transect of marine surface sediment samples from 1° N to 28° S off southwest Africa was analysed to verify the application of hydrogen isotope compositions of terrestrial plant-wax n-alkanes preserved in ocean sediments as a proxy for continental hydrological conditions. Conditions on the adjacent continent range from humid evergreen forests to deciduous forests, wood- and shrub land and further to arid grasslands and deserts. The hydrogen isotope values for the dominant n-alkane homologues (C29, C31 and C33) vary from -123 per mil to -141 per mil VSMOW and correlate with the modelled hydrogen isotope composition of mean annual and growing season precipitation of postulated continental source areas (r up to 0.8, p < 0.01). The apparent hydrogen isotope fractionation between alkanes and mean annual precipitation is remarkably uniform (-109 per mil on average, Sigma <= 5 per mil, n = 27). Potentially, effects of aridity on the apparent hydrogen isotope fractionation are concealed by the contribution of different plants (C3 dicotyledons vs C4 grasses). Thus, isotope ratios of leaf wax n-alkanes preserved in ocean margin sediments in these and similar tropical regions may be directly converted to dD ratios of ancient precipitation by employing a constant hydrogen isotope fractionation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The annual cycle and non-seasonal variability of streamflow over a network of stations in western North America and Hawaii is studied in terms of atmospheric forcing elements. The phase lag between the annual cycle of streamflow and precipitation varies considerably over this network, as does the persistence of monthly streamflow anomalies. This lag effect appears to be largely a function of the relative amount of snow laid down in a particular basin. In addition to the rather strong annual cycle that exists in mean streamflow and its variance at most of the stations, there is also a distinct annual cycle in the autocorrelation of streamflow anomalies that is related to the interplay between the temperature and precipitation annual cycles; of particular importance is the existence of stored water in the form of a snow pack.
Resumo:
The meadow ecosystem on the Qinghai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for predicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow ecosystem was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv= 28.82%). The net primary production was insensitive to either the precipitation (E = 0.0782) or air temperature (E = 0.1113). In summary, the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosystem. The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3-4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment.
Resumo:
Precipitation and temperature climate indices are calculated using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and validated against observational data from some stations over Brazil and other data sources. The spatial patterns of the climate indices trends are analyzed for the period 1961-1990 over South America. In addition, the correlation and linear regression coefficients for some specific stations were also obtained in order to compare with the reanalysis data. In general, the results suggest that NCEP/NCAR reanalysis can provide useful information about minimum temperature and consecutive dry days indices at individual grid cells in Brazil. However, some regional differences in the climate indices trends are observed when different data sets are compared. For instance, the NCEP/NCAR reanalysis shows a reversal signal for all rainfall annual indices and the cold night index over Argentina. Despite these differences, maps of the trends for most of the annual climate indices obtained from the NCEP/NCAR reanalysis and BRANT analysis are generally in good agreement with other available data sources and previous findings in the literature for large areas of southern South America. The pattern of trends for the precipitation annual indices over the 30 years analyzed indicates a change to wetter conditions over southern and southeastern parts of Brazil, Paraguay, Uruguay, central and northern Argentina, and parts of Chile and a decrease over southwestern South America. All over South America, the climate indices related to the minimum temperature (warm or cold nights) have clearly shown a warming tendency; however, no consistent changes in maximum temperature extremes (warm and cold days) have been observed. Therefore, one must be careful before suggesting an), trends for warm or cold days.
Resumo:
Despite remarkable significance of Pantanal for the conservation of aquatic birds, the status of their populations, the spatiotemporal patterns of distribution and habitat use and structure of communities are little known. Thus, we studied three aquatic environments (Negro river, bays and salines) from 2007 to 2009 in the Nhecolandia Pantanal to verify the distribution and composition of aquatic birds and also if there is significant seasonal influence on these aspects. We adopted the transect method (288 hours of sampling) and recorded 135 species (7.834 individuals). The Negro river showed the highest diversity, while the salines the lowest. The similarity of aquatic bird communities was higher between bays and salines, followed by Negro river and bays and lower between salines and Negro river. The equidistribution is more variable in the salines and more stable in the Negro river. The environments strongly differ from each other in aquatic bird composition in space (habitat use and distribution) and time (seasonal water fluctuations). The diversity of bird community in the dry season varies significantly in the salines, followed by the bays and more stable in the Negro river. The Negro river, regardless of large annual amplitude of flow, is more seasonally stable since its riparian vegetation is continuous (not isolated) and constant. These aspects provide better conditions to stay all year, contributing to decrease the seasonal nomadic tendencies of aquatic birds. Finally, all these data provide strong arguments to the preservation of all phytophysiognomies in the Nhecolandia sub-region of Pantanal, but with special attention to the salines widely used by many flocks of aquatic birds (mainly in the dry season) and migrant and/or rare species restricted to this habitat.