983 resultados para Contextual Load Optimization
Resumo:
As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The transmission system is responsible for connecting the power generators to consumers safely and reliably, its constant expansion is necessary to transport increasing amounts of electricity. In order to help the power systems engineers, an optimization tool for optimize the expansion of the transmission system was developed using the modeling method of the linearized load flow and genetic. This tool was designed to simulate the impact of different scenarios on the cost of transmission expansion. The proposed tool was used to simulate the effects of the presence of distributed generation in the expansion of a fictitious transmission system, where it was found a clear downward trend in investment required for the expansion of the transmission system taking account of increasing levels of distributed generation.
Resumo:
Wavelength division multiplexing (WDM) offers a solution to the problem of exploiting the large bandwidth on optical links; it is the current favorite multiplexing technology for optical communication networks. Due to the high cost of an optical amplifier, it is desirable to strategically place the amplifiers throughout the network in a way that guarantees that all the signals are adequately amplified while minimizing the total number amplifiers being used. Previous studies all consider a star-based network. This paper demonstrates an original approach for solving the problem in switch-based WDM optical network assuming the traffic matrix is always the permutation of the nodes. First we formulate the problem by choosing typical permutations which can maximize traffic load on individual links; then a GA (Genetic Algorithm) is used to search for feasible amplifier placements. Finally, by setting up all the lightpaths without violating the power constaints we confirm the feasibility of the solution.
Resumo:
Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
La presente dissertazione investiga la possibilità di ottimizzare l’uso di energia a bordo di una nave per trasporto di prodotti chimici e petrolchimici. Il software sviluppato per questo studio può essere adattato a qualsiasi tipo di nave. Tale foglio di calcolo fornisce la metodologia per stimare vantaggi e miglioramenti energetici, con accuratezza direttamente proporzionale ai dati disponibili sulla configurazione del sistema energetico e sui dispositivi installati a bordo. Lo studio si basa su differenti fasi che permettono la semplificazione del lavoro; nell’introduzione sono indicati i dati necessari per svolgere un’accurata analisi ed è presentata la metodologia adottata. Inizialmente è fornita una spiegazione sul layout dell’impianto, sulle sue caratteristiche e sui principali dispositivi installati a bordo. Vengono dunque trattati separatamente i principali carichi, meccanico, elettrico e termico. In seguito si procede con una selezione delle principali fasi operative della nave: è seguito tale approccio in modo da comprendere meglio la ripartizione della richiesta di potenza a bordo della nave e il suo sfruttamento. Successivamente è svolto un controllo sul dimensionamento del sistema elettrico: ciò aiuta a comprendere se la potenza stimata dai progettisti sia assimilabile a quella effettivamente richiesta sulla nave. Si ottengono in seguito curve di carico meccanico, elettrico e termico in funzione del tempo per tutte le fasi operative considerate: tramite l’uso del software Visual Basic Application (VBA) vengono creati i profili di carico che possono essere gestiti nella successiva fase di ottimizzazione. L’ottimizzazione rappresenta il cuore di questo studio; i profili di potenza ottenuti dalla precedente fase sono gestiti in modo da conseguire un sistema che sia in grado di fornire potenza alla nave nel miglior modo possibile da un punto di vista energetico. Il sistema energetico della nave è modellato e ottimizzato mantenendo lo status quo dei dispositivi di bordo, per i quali sono considerate le configurazioni di “Load following”, “two shifts” e “minimal”. Una successiva investigazione riguarda l’installazione a bordo di un sistema di accumulo di energia termica, così da migliorare lo sfruttamento dell’energia disponibile. Infine, nella conclusione, sono messi a confronto i reali consumi della nave con i risultati ottenuti con e senza l’introduzione del sistema di accumulo termico. Attraverso la configurazione “minimal” è possibile risparmiare circa l’1,49% dell’energia totale consumata durante un anno di attività; tale risparmio è completamente gratuito poiché può essere raggiunto seguendo alcune semplici regole nella gestione dell’energia a bordo. L’introduzione di un sistema di accumulo termico incrementa il risparmio totale fino al 4,67% con un serbatoio in grado di accumulare 110000 kWh di energia termica; tuttavia, in questo caso, è necessario sostenere il costo di installazione del serbatoio. Vengono quindi dibattuti aspetti economici e ambientali in modo da spiegare e rendere chiari i vantaggi che si possono ottenere con l’applicazione di questo studio, in termini di denaro e riduzione di emissioni in atmosfera.
Resumo:
Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
This work presents a behavioral-analytical hybrid loss model for a buck converter. The model has been designed for a wide operating frequency range up to 4MHz and a low power range (below 20W). It is focused on the switching losses obtained in the power MOSFETs. Main advantages of the model are the fast calculation time (below 8.5 seconds) and a good accuracy, which makes this model suitable for the optimization process of the losses in the design of a converter. It has been validated by simulation and experimentally with one GaN power transistor and three Si MOSFETs. Results show good agreement between measurements and the model