994 resultados para Construction contracts
Resumo:
Contracts Accepted for letting reports from the Iowa Department of Transportation.
Resumo:
Twelve regularly scheduled lettings and three emergency/special lettings were held by the Iowa Department of Transportation for construction and maintenance work during the period covered by this report. At these lettings, projects totally $741,289,234 were approved.
Resumo:
When referenced, the 2012 edition of the Iowa Department of Transportation’s (Iowa DOT) Standard Specifications for Highway and Bridge Construction shall be used for contract work awarded by the Iowa DOT. They may also be incorporated by reference in other contract work on secondary, urban, local systems, or other contract work in which the Iowa DOT has an interest. As modified by the General Supplemental Specifications, these Standard Specifications represent the minimum requirements and may be modified by Supplemental Specifications, Developmental Specifications, and Special Provisions on specific contracts. These Standard Specifications have been written so the Contractor’s responsibilities are indicated by plain language using the Imperative Mood and Active Voice form. Sentences are of the form: Construct isolation joints at all points where driveways meet other walks, curbs, or fixtures in the surface. Ensure finished members are true to detailed dimensions and free from twists, bends, open joints, or other defects resulting from faulty fabrication or defective work. Personnel preparing the JMF shall be Iowa DOT certified in bituminous mix design. The Contracting Authority’s responsibilities are (with some exceptions) indicated by the use of the modal verb “will”. Sentences are of the form: The Engineer will obtain and test density samples for each lot according to Materials I.M. 204. Payment will be the contract unit price for Fabric Reinforcement per square yard (square meter). These standard specifications contain dual units of measure: the United States Standard measure (English units) and the International System of Units (SI or “metric” units). The English units are expressed first then followed by the metric units in parentheses. The measurements expressed in the two systems are not necessarily equal. In some cases the measurements in metric units is a “hard” conversion of the English measurement; i.e. the metric unit has been approximated with a rounded, rationalized metric measurement that is easy to work with and remember. The proposal form will identify whether the work was designed and shall be constructed in English or metric units.
Resumo:
The purpose of the thesis is to study innovativeness in a context of the construction industry especially the front-end of the innovation process. The construction industry is often considered an old-fashioned manufacturing industry. Innovations and innovativeness are rarely linked to the industry. The construction industry, as well as other industries in Finland, is facing challenges such as productivity, the climate change and internationalization. The meaning of innovations is greater than ever in continuously changing markets, for standing out from competitors or increasing the competitiveness. Traditional production methods, tight building regulations, unique buildings, one-of-a-kind project organizations and highlighting the cheapest price in building contracts are particular challenges in the construction industry. The research questions of the thesis were: - What kind of factors shift the existing company culture towards innovativeness? - What are the phases of the front-end of the innovation process? - What kind of tools and methods enable managing the front-end of the innovation process? The theoretical part of the thesis bases on the literature review. The research methodology of the empirical part was the action research and qualitative approach. Empirical data was collected by the theme interviews from three companies. The results were practical methods and experiences from innovation activities of the companies. The results of the thesis can be clarified as follows: enhancement of the innovation activities requires support and commitment of the top management, innovative culture and innovation strategy. Innovativeness can be promoted by systematical methods for example collecting ideas from employees. Controlling and managing the front-end phase is essential to succeeding. Despite that managing the front-end is the most challenging part of the innovation process, development and management of that save companies’ money, resources and prevents useless investments. Further clarification and studies are needed to find out furthermore functional tools and methods to manage innovations and implementing them to the culture of the companies.
Resumo:
La collusion est une pratique anticoncurrentielle qui a pour but la coopération de personnes morales afin d’atteindre un but commun tel que le profit. Cette méthode se retrouve dans le milieu de la construction notamment par la rotation de contrat, par la fixation de prix ou le débalancement de bordereaux. Bien que la collusion dans la construction soit souvent associée au crime organisé, cette étude propose l’hypothèse d’un contrôle du marché par le crime organisant et non le crime organisé. Ainsi, l’industrie de la construction serait influencée par une organisation en mouvance et en développement constant pouvant s’organiser tout en organisant d’autres noyaux. En analysant le marché de l’industrie de la construction, cette étude a pu relever qu’il était possible à l’aide d’outils quantitatifs tels que l’analyse de classification d’identifier des irrégularités au sein du marché, au fil des années. Des entrevues passées auprès d’acteurs du domaine de la construction sont venues confirmer l’hypothèse d’un contrôle du marché par le crime organisant et non le crime organisé. L’analyse qualitative se penchait ainsi sur les motivations des acteurs à entreprendre des pratiques anticoncurrentielles et sur la compréhension de l’émergence de la collusion dans la construction. La discussion identifie les opportunités criminelles, de même que les problématiques survenant dans le milieu de la construction et pouvant influencer l’émergence de la collusion. Ces problématiques concernent les contributions aux partis politiques, le truquage des devis et bordereaux par les firmes de consultants, l’impunité des autorités, l’historicité des entrepreneurs, l’idéologie de marché et les problématiques liées au cautionnement. Enfin, des solutions adaptées à la réalité de l’industrie de la construction en tenant compte des facteurs de risque ont été identifiées.
Resumo:
Standard form contracts are typically developed through a negotiated consensus, unless they are proffered by one specific interest group. Previously published plans of work and other descriptions of the processes in construction projects tend to focus on operational issues, or they tend to be prepared from the point of view of one or other of the dominant interest groups. Legal practice in the UK permits those who draft contracts to define their terms as they choose. There are no definitive rulings from the courts that give an indication as to the detailed responsibilities of project participants. The science of terminology offers useful guidance for discovering and describing terms and their meanings in their practical context, but has never been used for defining terms for responsibilities of participants in the construction project management process. Organizational analysis enables the management task to be deconstructed into its elemental parts in order that effective organizational structures can be developed. Organizational mapping offers a useful technique for reducing text-based descriptions of project management roles and responsibilities to a comparable basis. Research was carried out by means of a desk study, detailed analysis of nine plans of work and focus groups representing all aspects of the construction industry. No published plan of work offers definitive guidance. There is an enormous amount of variety in the way that terms are used for identifying responsibilities of project participants. A catalogue of concepts and terms (a “Terminology”) has been compiled and indexed to enable those who draft contracts to choose the most appropriate titles for project participants. The purpose of this terminology is to enable the selection and justification of appropriate terms in order to help define roles. The terminology brings an unprecedented clarity to the description of roles and responsibilities in construction projects and, as such, will be helpful for anyone seeking to assemble a team and specify roles for project participants.
Resumo:
This report addresses the extent that managerial practices can be shared between the aerospace and construction sectors. Current recipes for learning from other industries tend to be oversimplistic and often fail to recognise the embedded and contextual nature of managerial knowledge. Knowledge sharing between business sectors is best understood as an essential source of innovation. The process of comparison challenges assumptions and better equips managers to cope with future change. Comparisons between the aerospace and construction sectors are especially useful because they are so different. The two sectors differ hugely in terms of their institutional context, structure and technological intensity. The aerospace sector has experienced extensive consolidation and is dominated by a small number of global companies. Aerospace companies operate within complex networks of global interdependency such that collaborative working is a commercial imperative. In contrast, the construction sector remains highly fragmented and is characterised by a continued reliance on small firms. The vast majority of construction firms compete within localised markets that are too often characterised by opportunistic behaviour. Comparing construction to aerospace highlights the unique characteristics of both sectors and helps explain how managerial practices are mediated by context. Detailed comparisons between the two sectors are made in a range of areas and guidance is provided for the implementation of knowledge sharing strategies within and across organisations. The commonly accepted notion of ‘best practice’ is exposed as a myth. Indeed, universal models of best practice can be detrimental to performance by deflecting from the need to adapt continuously to changing circumstances. Competitiveness in the construction sector too often rests on efficiency in managing contracts, with a particular emphasis on the allocation of risk. Innovation in construction tends to be problem-driven and is rarely shared from project to project. In aerospace, the dominant model of competitiveness means that firms have little choice other than to invest in continuous innovation, despite difficult trading conditions. Research and development (R&D) expenditure in aerospace continues to rise as a percentage of turnovers. A sustained capacity for innovation within the aerospace sector depends crucially upon stability and continuity of work. In the construction sector, the emergence of the ‘hollowed-out’ firm has undermined the industry’s capacity for innovation. Integrated procurement contexts such as prime contracting in construction potentially provide a more supportive climate for an innovation-based model of competitiveness. However, investment in new ways of working depends upon a shift in thinking not only amongst construction contractors, but also amongst the industry’s major clients.
Resumo:
Firms form consortia in order to win contracts. Once a project has been awarded to a consortium each member then concentrates on his or her own contract with the client. Therefore, consortia are marketing devices, which present the impression of teamworking, but the production process is just as fragmented as under conventional procurement methods. In this way, the consortium forms a barrier between the client and the actual construction production process. Firms form consortia, not as a simple development of normal ways of working, but because the circumstances for specific projects make it a necessary vehicle. These circumstances include projects that are too large or too complex to undertake alone or projects that require on-going services which cannot be provided by the individual firms inhouse. It is not a preferred way of working, because participants carry extra risk in the form of liability for the actions of their partners in the consortium. The behaviour of members of consortia is determined by their relative power, based on several factors, including financial commitment and ease of replacement. The level of supply chain visibility to the public sector client and to the industry is reduced by the existence of a consortium because the consortium forms an additional obstacle between the client and the firms undertaking the actual construction work. Supply chain visibility matters to the client who otherwise loses control over the process of construction or service provision, while remaining accountable for cost overruns. To overcome this separation there is a convincing argument in favour of adopting the approach put forward in the Project Partnering Contract 2000 (PPC2000) Agreement. Members of consortia do not necessarily go on to work in the same consortia again because members need to respond flexibly to opportunities as and when they arise. Decision-making processes within consortia tend to be on an ad hoc basis. Construction risk is taken by the contractor and the construction supply chain but the reputational risk is carried by all the firms associated with a consortium. There is a wide variation in the manner that consortia are formed, determined by the individual circumstances of each project; its requirements, size and complexity, and the attitude of individual project leaders. However, there are a number of close working relationships based on generic models of consortia-like arrangements for the purpose of building production, such as the Housing Corporation Guidance Notes and the PPC2000.
Resumo:
FIDIC has over the years produced standard forms of contracts for the international procurement of projects. A source of continuing criticism of its Red Book concerns the duality in the traditional role of the engineer as the employer's agent and as an independent third party holding the balance fairly between the employer and the contractor. In response to this and other criticisms FIDIC produced a replacement for it in 1999. The role of the engineer under the new Red Book is critically examined in the light of relevant case law, expert commentaries and feedback from two multidisciplinary workshops with international participation. The examination identified three major changes: (1) a duty to act impartially has been replaced by a duty to make fair determination of certain matters; (2) it is open to parties to allow greater control of the engineer by the employer by stating in the appropriate part of the contract powers the engineer must not exercise without the employer's approval; (3) there is provision for a Dispute Adjudication Board (DAB) to which disputes may be referred. Although the duality has not been eliminated completely, the contract is structured flexibly enough to support those who wish to contract on the basis of the engineer acting solely as the agent of the employer.
Resumo:
The Private Finance Initiative (PFI) is frequently portrayed as a vehicle for change for the UK construction sector. Significant change in the working practices of construction companies is predicted as new business models based on whole-life value creation emerge. This paper shifts the focus of discussion from projected ideals and possible developments to the current situation. More specifically, it focuses on the challenges that large firms participating in both PFI and traditional markets face. The analysis focuses on the relations between business units and on day-to-day challenges to greater long-term commitment, through life-service provision and increased integration between construction and service provision. The paper offers insights into the effects of PFI on construction practice and their implications for theorizing on organizational and strategic change. It suggests abandoning a simplistic model of the centralized, homogenous firm and instead capturing the dynamics of decentralized, large firms working in multiple markets on a variety of projects. This would assist in the provision of more realistic and fruitful models of how to realize the PFI vision.
Resumo:
Construction procurement is complex and there is a very wide range of options available to procurers. Inappropriate choices about how to procure may limit practical opportunities for innovation. In particular, traditional approaches to construction procurement set up many obstacles for technology suppliers to provide innovative solutions. This is because they are often employed as sub-contractors simply to provide and install equipment to specifications developed before the point at which they become involved in a project. A research team at the University of Reading has developed a procurement framework that comprehensively defines the various options open to procurers in a more fine-grained way than has been known in the past. This enables informed decisions that can establish tailor-made procurement approaches that take into account the needs of specific clients. It enables risk and reward structures to be aligned so that contracts and payment mechanisms are aligned precisely with what a client seeks to achieve. This is not a “one-size-fits-all” approach. Rather, it is an approach that enables informed decisions about how to organize individual procurements that are appropriate to particular circumstances, acknowledging that they differ for each client and for each procurement exercise. Within this context, performance-based contracting (PBC) is explored in terms of the different ways in which technology suppliers within constructed facilities might be encouraged and rewarded for the kinds of innovation sought by the ultimate clients. Examples from various industry sectors are presented, from public sector and from private sector, with a commentary about what they sought to achieve and the extent to which they were successful. The lessons from these examples are presented in terms of feasibility in relation to financial issues, governance, economics, strategic issues, contractual issues and cash flow issues for clients and for contractors. Further background documents and more detailed readings are provided in an appendix for those who wish to find out more.
Resumo:
Role conflict happens when a person faces different and incompatible expectations regarding a particular social status which they occupy. The literature on role conflict is reviewed for a better understanding of project dynamics in construction teams. The discussion focuses on issues surrounding the miscommunication of role expectations and tensions owing to differences in expectations of the same role. This ongoing doctoral study involves a qualitative research design, based on interviews with practicing professionals. Analysis will focus on the relation between formal expectations, as evidenced in contracts and other types of written communication, and informal expectations as observed from the interviews. Insights from the literature review suggest: 1. that the differences between formal and informal expectations is a major sources of role conflict in construction teams and 2. that this effect is exacerbated by the failure of team members to recognise it and take it into account.
Resumo:
Currently, multi-attribute auctions are becoming widespread awarding mechanisms for contracts in construction, and in these auctions, criteria other than price are taken into account for ranking bidder proposals. Therefore, being the lowest-price bidder is no longer a guarantee of being awarded, thus increasing the importance of measuring any bidder’s performance when not only the first position (lowest price) matters. Modeling position performance allows a tender manager to calculate the probability curves related to the more likely positions to be occupied by any bidder who enters a competitive auction irrespective of the actual number of future participating bidders. This paper details a practical methodology based on simple statistical calculations for modeling the performance of a single bidder or a group of bidders, constituting a useful resource for analyzing one’s own success while benchmarking potential bidding competitors.
Resumo:
In the year 1999 approves the Law of Construction Building (LOE, in Spanish) to regulate a sector such as construction, which contained some shortcomings from the legal point of view. Currently, the LOE has been in force 12 years, changing the spanish world of the construction, due to influenced by internationalization. Within the LOE, there regulating the different actors involved in the construction building, as the Projects design, the Director of Construction, the developer, The builder, Director of execution of the construction (actor only in Spain, similar as construcion engineer and abroad in), control entities and the users, but lacks figure Project manager will assume the delegation of the promoter helping and you organize, direct and management the process. This figure assumes that the market and contracts are not legally regulated in Spain, then should define and establish its regulation in the LOE. (Spain Construction Law) The translation in spanish of the words "Project Manager is owed to Professor Rafael de Heredia in his book Integrated Project Management, as agent acting on behalf of the organization and promoter assuming control of the project, ie Integraded Project Management . Already exist in Spain, AEDIP (Spanish Association Integrated of Project Construction management) which comprises the major companies in “Project Management” in Spain, and MeDIP (Master in Integrated Construction Project) the largest and most advanced studies at the Polytechnic University of Madrid, in "Construction Project Management" they teach which is also in Argentina. The Integrated Project ("Project Management") applied to the construction process is a methodological technique that helps to organize, control and manage the resources of the promoters in the building process. When resources are limited (which is usually most situations) to manage them efficiently becomes very important. Well, we find that in this situation, the resources are not only limited, but it is limited, so a comprehensive control and monitoring of them becomes not only important if not crucial. The alternative of starting from scratch with a team that specializes in developing these follow directly intervening to ensure that scarce resources are used in the best possible way requires the use of a specific methodology (Manual DIP, Matrix Foreign EDR breakdown structure EDP Project, Risk Management and Control, Design Management, et ..), that is the methodology used by "Projects managers" to ensure that the initial objectives of the promoters or investors are met and all actors in process, from design to construction company have the mind aim of the project will do, trying to get their interests do not prevail over the interests of the project. Among the agents listed in the building process, "Project Management" or DIPE (Director Comprehensive building process, a proposed name for possible incorporation into the LOE, ) currently not listed as such in the LOE (Act on Construction Planning ), one of the agents that exist within the building process is not regulated from the legal point of view, no obligations, ie, as is required by law to have a project, a builder, a construction management, etc. DIPE only one who wants to hire you as have been advanced knowledge of their services by the clients they have been hiring these agents, there being no legal obligation as mentioned above, then the market is dictating its ruling on this new figure, as if it were necessary, he was not hired and eventually disappeared from the building process. As the aim of this article is regular the process and implement the name of DIPE in the Spanish Law of buildings construction (LOE)
Resumo:
El presente trabajo se basa en la filosofía de la Construcción sin Pérdidas (“Lean Construction”), analizando la situación de esta filosofía en el sector de la edificación en el contexto internacional y español, respondiendo las siguientes preguntas: 1. ¿Cómo surge el “Lean Construction”? 2. ¿Cuáles son sus actividades, funciones y cometidos? 3. ¿Existe regulación del ¨Lean Construction” en otros países? 4. ¿Existe demanda del ¨Lean Construction” en España? 5. ¿Existe regulación del ¨Lean Construction” en España? 6. ¿Cómo debería ser la regulación ¨Lean Construction” en España? 7. ¿Cuál es la relación del “Lean Construction” con el “Project & Construction Management”? 8. ¿Cómo debería ser la regulación de “Lean Construction” en España considerando su relación con el “Project & Construction Management”? Las preguntas indicadas las hemos respondido detalladamente en el presente trabajo, a continuación se resume las respuestas a dichas preguntas: 1. El “Lean Construction” surge en agosto de 1992, cuando el investigador finlandés Lauri Koskela publicó en la Universidad de Stanford el reporte TECHNICAL REPORT N° 72 titulado “Application of the New Production Philosophy to Construction”. Un año más tarde el Dr. Koskela invitó a un grupo de especialistas en construcción al primer workshop de esta materia en Finlandia, dando origen al International Group for Lean Construction (IGLC) lo que ha permitido extender la filosofía a EEUU, Europa, América, Asia, Oceanía y África. “Lean Construction” es un sistema basado en el enfoque “Lean Production” desarrollado en Japón por Toyota Motors a partir de los años cincuenta, sistema que permitió a sus fábricas producir unidades con mayor eficiencia que las industrias americanas, con menores recursos, en menor tiempo, y con un número menor de errores de fabricación. 2. El sistema “Lean Construction” busca maximizar el valor y disminuir las pérdidas de los proyectos generando una coordinación eficiente entre los involucrados, manejando un proyecto como un sistema de producción, estrechando la colaboración entre los participantes de los proyectos, capacitándoles y empoderándoles, fomentando una cultura de cambio. Su propósito es desarrollar un proceso de construcción en el que no hayan accidentes, ni daños a equipos, instalaciones, entorno y comunidad, que se realice en conformidad con los requerimientos contractuales, sin defectos, en el plazo requerido, respetando los costes presupuestados y con un claro enfoque en la eliminación o reducción de las pérdidas, es decir, las actividades que no generen beneficios. El “Last Planner System”, o “Sistema del Último Planificador”, es un sistema del “Lean Construction” que por su propia naturaleza protege a la planificación y, por ende, ayuda a maximizar el valor y minimizar las pérdidas, optimizando de manera sustancial los sistemas de seguridad y salud. El “Lean Construction” se inició como un concepto enfocado a la ejecución de las obras, posteriormente se aplicó la filosofía a todas las etapas del proyecto. Actualmente considera el desarrollo total de un proyecto, desde que nace la idea hasta la culminación de la obra y puesta en marcha, considerando el ciclo de vida completo del proyecto. Es una filosofía de gestión, metodologías de trabajo y una cultura empresarial orientada a la eficiencia de los procesos y flujos. La filosofía “Lean Construction” se está expandiendo en todo el mundo, además está creciendo en su alcance, influyendo en la gestión contractual de los proyectos. Su primera evolución consistió en la creación del sistema “Lean Project Delivery System”, que es el concepto global de desarrollo de proyectos. Posteriormente, se proponen el “Target Value Design”, que consiste en diseñar de forma colaborativa para alcanzar los costes y el valor requerido, y el “Integrated Project Delivery”, en relación con sistemas de contratos relacionales (colaborativos) integrados, distintos a los contratos convencionales. 3. Se verificó que no existe regulación específica del ¨Lean Construction” en otros países, en otras palabras, no existe el agente con el nombre específico de “Especialista en Lean Construction” o similar, en consecuencia, es un agente adicional en el proyecto de la edificación, cuyas funciones y cometidos se pueden solapar con los del “Project Manager”, “Construction Manager”, “Contract Manager”, “Safety Manager”, entre otros. Sin embargo, se comprobó la existencia de formatos privados de contratos colaborativos de Integrated Project Delivery, los cuales podrían ser tomados como unas primeras referencias para futuras regulaciones. 4. Se verificó que sí existe demanda del ¨Lean Construction” en el desarrollo del presente trabajo, aunque aún su uso es incipiente, cada día existe más interesados en el tema. 5. No existe regulación del ¨Lean Construction” en España. 6. Uno de los objetivos fundamentales de esta tesis es el de regular esta figura cuando actúe en un proyecto, definir y realizar una estructura de Agente de la Edificación, según la Ley de Ordenación de la Edificación (LOE), y de esta manera poder introducirla dentro de la Legislación Española, protegiéndola de eventuales responsabilidades civiles. En España existe jurisprudencia (sentencias de los tribunales de justicia españoles) con jurisdicción civil basada en la LOE para absolver o condenar a agentes de la edificación que son definidos en los tribunales como “gestores constructivos” o similares. Por este motivo, en un futuro los tribunales podrían dictaminar responsabilidades solidarias entre el especialista “Lean Construction” y otros agentes del proyecto, dependiendo de sus actuaciones, y según se implemente el “Lean Project Delivery System”, el “Target Value Design” y el “Integrated Project Delivery”. Por otro lado, es posible que el nivel de actuación del especialista “Lean Construcción” pueda abarcar la gestión del diseño, la gestión de la ejecución material (construcción), la gestión de contratos, o la gestión integral de todo el proyecto de edificación, esto último, en concordancia con la última Norma ISO 21500:2012 o UNE-ISO 21500:2013 Directrices para la dirección y gestión de proyectos. En consecuencia, se debería incorporar adecuadamente a uno o más agentes de la edificación en la LOE de acuerdo a sus funciones y responsabilidades según los niveles de actuación del “Especialista en Lean Construction”. Se propone la creación de los siguientes agentes: Gestor del Diseño, Gestor Constructivo y Gestor de Contratos, cuyas definiciones están desarrolladas en este trabajo. Estas figuras son definidas de manera general, puesto que cualquier “Project Manager” o “DIPE”, gestor BIM (Building Information Modeling), o similar, puede actuar como uno o varios de ellos. También se propone la creación del agente “Gestor de la Construcción sin Pérdidas”, como aquel agente que asume las actuaciones del “gestor de diseño”, “gestor constructivo” y “gestor de contratos” con un enfoque en los principios del Lean Production. 7. En la tesis se demuestra, por medio del uso de la ISO 21500, que ambos sistemas son complementarios, de manera que los proyectos pueden tener ambos enfoques y ser compatibilizados. Un proyecto que use el “Project & Construction Management” puede perfectamente apoyarse en las herramientas y técnicas del “Lean Construction” para asegurar la eliminación o reducción de las pérdidas, es decir, las actividades que no generen valor, diseñando el sistema de producción, el sistema de diseño o el sistema de contratos. 8. Se debería incorporar adecuadamente al agente de la edificación “Especialista en Lean Construction” o similar y al agente ¨Especialista en Project & Construction Management” o DIPE en la Ley de Ordenación de la Edificación (LOE) de acuerdo a sus funciones y responsabilidades, puesto que la jurisprudencia se ha basado para absolver o condenar en la referida Ley. Uno de los objetivos fundamentales de esta tesis es el de regular la figura del “Especialista en Lean Construction” cuando actúa simultáneamente con el DIPE, y realizar una estructura de Agente de la Edificación según la LOE, y de esta manera protegerlo de eventuales responsabilidades solidarias. Esta investigación comprueba que la propuesta de definición del agente de edificación DIPE, según la LOE, presentada en la tesis doctoral del Doctor Manuel Soler Severino es compatible con las nuevas definiciones propuestas. El agente DIPE puede asumir los roles de los diferentes gestores propuestos en esta tesis si es que se especializa en dichas materias, o, si lo estima pertinente, recomendar sus contrataciones. ABSTRACT This work is based on the Lean Construction philosophy; an analysis is made herein with regard to the situation of this philosophy in the building sector within the international and Spanish context, replying to the following questions: 1. How did the concept of Lean Construction emerge? 2. Which are the activities, functions and objectives of Lean Construction? 3. Are there regulations on Lean Construction in other countries? 4. Is there a demand for Lean Construction in Spain? 5. Are there regulations on Lean Construction in Spain? 6. How should regulations on Lean Construction be developed in Spain? 7. What is the relationship between Lean Construction and the Project & Construction Management? 8. How should regulations on Lean Construction be developed in Spain considering its relationship with the Project & Construction Management? We have answered these questions in detail here and the replies are summarized as follows: 1. The concept of Lean Construction emerged in august of 1992, when Finnish researcher Lauri Koskela published in Stanford University TECHNICAL REPORT N° 72 entitled “Application of the New Production Philosophy to Construction”. A year later, Professor Koskela invited a group of construction specialists to Finland to the first workshop conducted on this matter; thus, the International Group for Lean Construction (IGLC) was established, which has contributed to extending the philosophy to the United States, Europe, the Americas, Asia, Oceania, and Africa. Lean Construction is a system based on the Lean Production approach, which was developed in Japan by Toyota Motors in the 1950s. Thanks to this system, the Toyota plants were able to produce more units, with greater efficiency than the American industry, less resources, in less time, and with fewer manufacturing errors. 2. The Lean Construction system aims at maximizing the value of projects while reducing waste, producing an effective coordination among those involved; it manages projects as a production system, enhancing collaboration between the parties that participate in the projects while building their capacities, empowering them, and promoting a culture of change. Its purpose is to develop a construction process free of accidents, without damages to the equipment, facilities, environment and community, flawless, in accordance with contractual requirements, within the terms established, respecting budgeted costs, and with a clear approach to eliminating or reducing waste, that is, activities that do not generate benefits. The Last Planner System is a Lean Construction system, which by its own nature protects planning and, therefore, helps to maximize the value and minimize waste, optimizing substantially the safety and health systems. Lean Construction started as a concept focused on the execution of works, and subsequently the philosophy was applied to all the stages of the project. At present it considers the project’s total development, since the time ideas are born until the completion and start-up of the work, taking into account the entire life cycle of the project. It is a philosophy of management, work methodologies, and entrepreneurial culture aimed at the effectiveness of processes and flows. The Lean Construction philosophy is extending all over the world and its scope is becoming broader, having greater influence on the contractual management of projects. It evolved initially through the creation of the Lean Project Delivery System, a global project development concept. Later on, the Target Value Design was developed, based on collaborative design to achieve the costs and value required, as well as the Integrated Project Delivery, in connection with integrated relational (collaborative) contract systems, as opposed to conventional contracts. 3. It was verified that no specific regulations on Lean Construction exist in other countries, in other words, there are no agents with the specific name of “Lean Construction Specialist” or other similar names; therefore, it is an additional agent in building projects, which functions and objectives can overlap those of the Project Manager, Construction Manager, Contract Manager, or Safety Manager, among others. However, the existence of private collaborative contracts of Integrated Project Delivery was confirmed, which could be considered as first references for future regulations. 4. There is a demand for Lean Construction in the development of this work; even though it is still emerging, there is a growing interest in this topic. 5. There are no regulations on Lean Construction in Spain. 6. One of the main objectives of this thesis is to regulate this role when acting in a project, and to define and develop a Building Agent structure, according to the Building Standards Law (LOE by its acronym in Spanish), in order to be able to incorporate it into the Spanish law, protecting it from civil liabilities. In Spain there is jurisprudence in civil jurisdiction based on the LOE to acquit or convict building agents, which are defined in the courts as “construction managers” or similar. For this reason, courts could establish in the future joint and several liabilities between the Lean Construction Specialist and other agents of the project, depending on their actions and based on the implementation of the Lean Project Delivery System, the Target Value Design, and the Integrated Project Delivery. On the other hand, it is possible that the level of action of the Lean Construction Specialist may comprise design management, construction management and contract management, or the integral management of the entire building project in accordance with the last ISO 21500:2012 or UNE-ISO 21500:2013, guidelines for the management of projects. Accordingly, one or more building agents should be appropriately incorporated into the LOE according to their functions and responsibilities and based on the levels of action of the Lean Construction Specialist. The creation of the following agents is proposed: Design Manager, Construction Manager, and Contract Manager, which definitions are developed in this work. These agents are defined in general, since any Project Manager or DIPE, Building Information Modeling (BIM) Manager or similar, may act as one or as many of them. The creation of the Lean Construction Manager is also proposed, as the agent that takes on the role of the Design Manager, Construction Manager and Contract Manager with a focus on the Lean Production principles. 7. In the thesis it is demonstrated that through the implementation of the ISO 21500, both systems are supplementary, so projects may have both approaches and be compatible. A project that applies the Project & Construction Management may perfectly have the support of the tools, techniques and practices of Lean Construction to ensure the elimination or reduction of losses, that is, those activities that do not generate value, thus designing the production system, the design system, or the contract system. 8. The Lean Construction Specialist or similar and the Specialist in Project & Construction Management should be incorporated appropriately into the LOE according to their functions and responsibilities, since jurisprudence has been based on such Law to acquit or convict. One of the main objectives of this thesis is the regulate the role of the Lean Construction Specialist when acting simultaneously with the DIPE, and to develop a structure of the building agent, according to the LOE, and in this way protect such agent from joint and several liabilities. This research proves that the proposal to define the DIPE building agent, according to the LOE, and presented in the doctoral dissertation of Manuel Soler Severino, Ph.D. is compatible with the new definitions proposed. The DIPE agent may assume the roles of the different managers proposed in this thesis if he specializes in those topics or, if deemed pertinent, recommends that they be engaged.