973 resultados para Constrained evolutionary optimization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topological optimization problems based on stress criteria are solved using two techniques in this paper. The first technique is the conventional Evolutionary Structural Optimization (ESO), which is known as hard kill, because the material is discretely removed; that is, the elements under low stress that are being inefficiently utilized have their constitutive matrix has suddenly reduced. The second technique, proposed in a previous paper, is a variant of the ESO procedure and is called Smooth ESO (SESO), which is based on the philosophy that if an element is not really necessary for the structure, its contribution to the structural stiffness will gradually diminish until it no longer influences the structure; its removal is thus performed smoothly. This procedure is known as "soft-kill"; that is, not all of the elements removed from the structure using the ESO criterion are discarded. Thus, the elements returned to the structure must provide a good conditioning system that will be resolved in the next iteration, and they are considered important to the optimization process. To evaluate elasticity problems numerically, finite element analysis is applied, but instead of using conventional quadrilateral finite elements, a plane-stress triangular finite element was implemented with high-order modes for solving complex geometric problems. A number of typical examples demonstrate that the proposed approach is effective for solving problems of bi-dimensional elasticity. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with topology optimization in plane elastic-linear problems considering the influence of the self weight in efforts in structural elements. For this purpose it is used a numerical technique called SESO (Smooth ESO), which is based on the procedure for progressive decrease of the inefficient stiffness element contribution at lower stresses until he has no more influence. The SESO is applied with the finite element method and is utilized a triangular finite element and high order. This paper extends the technique SESO for application its self weight where the program, in computing the volume and specific weight, automatically generates a concentrated equivalent force to each node of the element. The evaluation is finalized with the definition of a model of strut-and-tie resulting in regions of stress concentration. Examples are presented with optimum topology structures obtaining optimal settings. (C) 2012 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espana, S.L.U. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biogeography is the science that studies the geographical distribution and the migration of species in an ecosystem. Biogeography-based optimization (BBO) is a recently developed global optimization algorithm as a generalization of biogeography to evolutionary algorithm and has shown its ability to solve complex optimization problems. BBO employs a migration operator to share information between the problem solutions. The problem solutions are identified as habitat, and the sharing of features is called migration. In this paper, a multiobjective BBO, combined with a predator-prey (PPBBO) approach, is proposed and validated in the constrained design of a brushless dc wheel motor. The results demonstrated that the proposed PPBBO approach converged to promising solutions in terms of quality and dominance when compared with the classical BBO in a multiobjective version.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]This works aims at assessing the acoustic efficiency of differente this noise barrier models. These designs frequently feature complex profiles and their implementarion in shape optimization processes may not always be easy in terms of determining their topological feasibility. A methodology to conduct both overall shape and top edge optimisations of thin cross section acoustic barriers by idealizing them as profiles with null boundary thickness is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]This Ph.D. thesis presents a general, robust methodology that may cover any type of 2D acoustic optimization problem. A procedure involving the coupling of Boundary Elements (BE) and Evolutionary Algorithms is proposed for systematic geometric modifications of road barriers that lead to designs with ever-increasing screening performance. Numerical simulations involving single- and multi-objective optimizations of noise barriers of varied nature are included in this document. results disclosed justify the implementation of this methodology by leading to optimal solutions of previously defined topologies that, in general, greatly outperform the acoustic efficiency of classical, widely used barrier designs normally erected near roads.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Solver Add-in of Microsoft Excel is widely used in courses on Operations Research and in industrial applications. Since the 2010 version of Microsoft Excel, the Solver Add-in comprises a so-called evolutionary solver. We analyze how this metaheuristic can be applied to the resource-constrained project scheduling problem (RCPSP). We present an implementation of a schedule-generation scheme in a spreadsheet, which combined with the evolutionary solver can be used for devising good feasible schedules. Our computational results indicate that using this approach, non-trivial instances of the RCPSP can be (approximately) solved to optimality.