926 resultados para Conservation analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brisbane City Hall (BCH) is arguably one of Brisbane’s most notable and iconic buildings. Serving as the public’s central civic and municipal building since 1930, the importance of this heritage listed building to cultural significance and identity is unquestionable. This attribute is reflected within the local government, with a simplified image of the halls main portico entrance supplying Brisbane City Council with its insignia and trademark signifier. Regardless of these qualities, this building has been neglected in a number of ways, primarily in the physical sense with built materials, but also, and just as importantly, through inaccurate and undocumented works. Numerous restoration and renovation works have been undertaken throughout BCH’s lifetime, however the records of these amendments are far and few between. Between 2010 and 2013, BCH underwent major restoration works, the largest production project undertaken on the building since its initial construction. Just prior to this conservation process, the full extent of the buildings deterioration was identified, much of which there was little to no original documentation of. This has led to a number of issues pertaining to what investigators expected to find within the building, versus what was uncovered (the unexpected), which have resulted directly from this lack of data. This absence of record keeping is the key factor that has contributed to the decay and unknown deficiencies that had amassed within BCH. Accordingly, this raises a debate about the methods of record keeping, and the need for a more advanced process that is able to be integrated within architectural and engineering programs, whilst still maintaining the ability to act as a standalone database. The immediate objective of this research is to investigate the restoration process of BCH, with focus on the auditorium, to evaluate possible strategies to record and manage data connected to building pathology so that a framework can be developed for a digital heritage management system. The framework produced for this digital tool will enable dynamic uses of a centralised database and aims to reduce the significant data loss. Following an in-depth analysis of this framework, it can be concluded that the implementation of the suggested digital tool would directly benefit BCH, and could ultimately be incorporated into a number of heritage related built form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In parts of the Indo-Pacific, large-scale exploitation of the green turtle Chelonia mydas continues to pose a serious threat to the persistence of this species; yet very few studies have assessed the pattern and extent of the impact of such harvests. We used demographic and genetic data in an age-based model to investigate the viability of an exploited green turtle stock from Aru, south-east Indonesia. We found that populations are decreasing under current exploitation pressures. The effects of increasingly severe exploitation activities at foraging and nesting habitat varied depending on the migratory patterns of the stock. Our model predicted a rapid decline of the Aru stock in Indonesia under local exploitation pressure and a shift in the genetic composition of the stock. We used the model to investigate the influence of different types of conservation actions on the persistence of the Aru stock. The results show that local management actions such as nest protection and reducing harvests of adult nesting and foraging turtles can have considerable conservation outcomes and result in the long-term persistence of genetically distinct management units. © 2010 The Authors. Animal Conservation © 2010 The Zoological Society of London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term systematic population monitoring data sets are rare but are essential in identifying changes in species abundance. In contrast, community groups and natural history organizations have collected many species lists. These represent a large, untapped source of information on changes in abundance but are generally considered of little value. The major problem with using species lists to detect population changes is that the amount of effort used to obtain the list is often uncontrolled and usually unknown. It has been suggested that using the number of species on the list, the "list length," can be a measure of effort. This paper significantly extends the utility of Franklin's approach using Bayesian logistic regression. We demonstrate the value of List Length Analysis to model changes in species prevalence (i.e., the proportion of lists on which the species occurs) using bird lists collected by a local bird club over 40 years around Brisbane, southeast Queensland, Australia. We estimate the magnitude and certainty of change for 269 bird species and calculate the probabilities that there have been declines and increases of given magnitudes. List Length Analysis confirmed suspected species declines and increases. This method is an important complement to systematically designed intensive monitoring schemes and provides a means of utilizing data that may otherwise be deemed useless. The results of List Length Analysis can be used for targeting species of conservation concern for listing purposes or for more intensive monitoring. While Bayesian methods are not essential for List Length Analysis, they can offer more flexibility in interrogating the data and are able to provide a range of parameters that are easy to interpret and can facilitate conservation listing and prioritization. © 2010 by the Ecological Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Threatened species often exist in a small number of isolated subpopulations. Given limitations on conservation spending, managers must choose from strategies that range from managing just one subpopulation and risking all other subpopulations to managing all subpopulations equally and poorly, thereby risking the loss of all subpopulations. We took an economic approach to this problem in an effort to discover a simple rule of thumb for optimally allocating conservation effort among subpopulations. This rule was derived by maximizing the expected number of extant subpopulations remaining given n subpopulations are actually managed. We also derived a spatiotemporally optimized strategy through stochastic dynamic programming. The rule of thumb suggested that more subpopulations should be managed if the budget increases or if the cost of reducing local extinction probabilities decreases. The rule performed well against the exact optimal strategy that was the result of the stochastic dynamic program and much better than other simple strategies (e.g., always manage one extant subpopulation or half of the remaining subpopulation). We applied our approach to the allocation of funds in 2 contrasting case studies: reduction of poaching of Sumatran tigers (Panthera tigris sumatrae) and habitat acquisition for San Joaquin kit foxes (Vulpes macrotis mutica). For our estimated annual budget for Sumatran tiger management, the mean time to extinction was about 32 years. For our estimated annual management budget for kit foxes in the San Joaquin Valley, the mean time to extinction was approximately 24 years. Our framework allows managers to deal with the important question of how to allocate scarce conservation resources among subpopulations of any threatened species. © 2008 Society for Conservation Biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peak electricity demand requires substantial investment to update transmission, distribution and generation infrastructure. A successful community peak demand reduction project was examined to identify residential consumer motivational and contextual factors involved in their decision to adopt/not adopt interventions. Energy professionals actively worked to achieve community 'peer' membership and by becoming a trusted information source, facilitated voluntary home energy assessment requests from over 80% of the residential community. By combining and tailoring interventions to the specific needs and motivations of individual householders and the community, interventions promoting energy conservation and efficiency can be effective in achieving sustained reduction in peak demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oily bittering Acheilognathus koreensis is a freshwater species that is endemic to Korea and is experiencing severe declines in natural populations as a result of habitat fragmentation and water pollution. For the conservation and restoration of this species, it is necessary to assess its genetic diversity at the population level. We developed 13 polymorphic microsatellite loci that were used to analyze the genetic diversity of two populations collected from the Kum River and the Tamjin River in Korea. All loci exhibited Mendelian inheritance patterns when examined in controlled crosses. Both populations revealed high levels of variability, with the number of alleles ranging from 3 to 20 and observed and expected heterozygosities ranging from 0.500 to 0.969 and from 0.529 to 0.938, respectively. None of the loci showed significant deviation from Hardy–Weinberg equilibrium, and one pair of loci showed significant linkage disequilibrium after Bonferroni correction. Pairwise F ST and genetic distance estimation showed significant differences between two populations. These results suggest that the microsatellites developed herein can be used to study the genetic diversity, population structure and conservation measure of A. koreensis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N A) = 12, allelic richness (A R) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N A = 13.86, A R = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy–Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F ST = 0.008, P < 0.01). Pairwise F ST, a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mountain yellow-legged frog Rana muscosa sensu lato, once abundant in the Sierra Nevada of California and Nevada, and the disjunct Transverse Ranges of southern California, has declined precipitously throughout its range, even though most of its habitat is protected. The species is now extinct in Nevada and reduced to tiny remnants in southern California, where as a distinct population segment, it is classified as Endangered. Introduced predators (trout), air pollution and an infectious disease (chytridiomycosis) threaten remaining populations. A Bayesian analysis of 1901 base pairs of mitochondrial DNA confirms the presence of two deeply divergent clades that come into near contact in the Sierra Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major mtDNA clades are readily differentiated phenotypically. Accordingly, we recognize two species, Rana sierrae, in the northern and central Sierra Nevada, and R. muscosa, in the southern Sierra Nevada and southern California. Existing data indicate no range overlap. These results have important implications for the conservation of these two species as they illuminate a profound mismatch between the current delineation of the distinct population segments (southern California vs. Sierra Nevada) and actual species boundaries. For example, our study finds that remnant populations of R. muscosa exist in both the southern Sierra Nevada and the mountains of southern California, which may broaden options for management. In addition, despite the fact that only the southern California populations are listed as Endangered, surveys conducted since 1995 at 225 historic (1899-1994) localities from museum collections show that 93.3% (n=146) of R. sierrae populations and 95.2% (n=79) of R. muscosa populations are extinct. Evidence presented here underscores the need for revision of protected population status to include both species throughout their ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quantitative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichiometric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and thermodynamic constraints, and finally addresses the challenges that lie ahead. Various use scenarios and biological insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification, are also discussed. Genome-scale constraint-based models have an immense potential for building and testing hypotheses, as well as to guide experimentation.