925 resultados para Coniferous Plantations
Resumo:
This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum) were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus at doses recommended for bean crop, these herbicides may be applied to control weeds in coffee and bean intercropping systems by spraying the entire area.
Resumo:
This study aimed to study the composition and dynamics of seed bank from soil of coffee plantations associated with grevilea trees in the experimental fields of the Southwest Bahia State University, on Vitória da Conquista campus. The experiments were carried out from September 2006 to May 2007. The coffee trees (Coffea arabica) were sown at three x one m spacing, associated with grevillea trees (Grevillea robusta) and maintained at densities of 277, 139, 123, 69, 62 and 31 plants ha-1, under direct sunlight. One hundred grams of soil were taken from each treatment with four repetitions and later identified and counted with a 10x magnifying glass. To determine seedling emergence, four soil samples of 1000 g were collected from each experimental field and transported to the greenhouse. Seedling emergence was observed by counts after 15, 30 and 45 days. The experimental design was randomized blocks of seven treatments (soil from different tree densities) and four replicates; the experimental unit consisted of a plastic tray (0, 30 x 0.22 x 0.06 m) containing 1.000 g of soil. The variables utilized to characterize the bank and its dynamics were: relative frequency, relative density, relative abundance, importance index and species diversity (Shannon-Weaver index).Increased number of monocotyledon seeds and sprouts were verified in the treatments maintained under full sunlight.
Resumo:
The objective of this work was to analyze the floristic variation and phytosociological structure of weeds as influenced by relief and time of year in eucalyptus plantations in Santana do Paraíso and Guanhães - MG. The total area sampled for each locality was approximately 10 ± 3 hectares, comprising three types of relief: lowland, slope, and upper area. In each type of relief, 10 plots of 1 m² were sampled, corresponding to 30 plots per locality, where they were randomly allocated in a zigzag. The taxonomic identification was performed in four assessments, corresponding to the months of November and March, comprising two ratings each season, always at the same points, and geo-referenced using the Global Positioning System (GPS). A total of 3,893 individuals, 18 families and 61 species, were identified in Santana do Paraiso and a total of 1,166 individuals, 13 families and 58 species, in Guanhães. In both localities, the most representative families in terms of wealth were: Poaceae, Asteraceae, and Fabaceae. Galinsoga parviflora was the most abundant species. The Vernonia polyantes was identified only in the lowlands, while Arrabida florida was identified in the slope and upper area. On the other hand, Emilia coccinea, Sida rhombifolia, S. paniculatum and Spermacoce latifolia were common to all three environments. Commelina benghalensis was present only in the month of March, while G. parviflora was present only in the month of November. It was concluded that the floristic and phytosociological variation of weeds in eucalyptus plantations is influenced by the type of relief and time of year, which should guide the management practices used in the culture.
Resumo:
A phyto-sociological survey is the first step to implement integrated weed management in crops. In this study, weed occurrence was evaluated in cassava plantations in the savannah of Roraima in northern Brazil. Harvest was performed randomly 80 times in 10 crops over four seasons (January, February, March, and April 2012). The harvested plants were cut at ground level, sorted out per species, identified, quantified, and weighed on a 0.01 g precision scale. A descriptive analysis was conducted of the phyto-sociological parameters (frequency, density, abundance, total number of individuals per species, relative frequency, relative density, relative abundance and importance value index) for the collected species. A description was also made of the botanical classes, families, species, type of propagation, life cycle, growth habit, total number of species and dry weight ha-1. The community in the surveyed area was considered to have a heterogeneous composition, comprising 27 species. The species presenting the highest density per hectare were Digitaria sanguinalis (210,500), Brachiaria brizantha (111,000), Brachiaria decumbens (86,500) and Brachiaria humidicola (69,000). Digitaria sanguinalis had the highest relative density (28.08), relative abundance (26.16) and importance value index (65,34). Most weeds had herbaceous growth habit.
Resumo:
Le cycle du carbone (C) est, depuis la révolution industrielle, déstabilisé par l’introduction dans l’atmosphère de C autrefois fossilisé. Certaines mesures de mitigation prometteuses impliquent la séquestration accrue du CO2 atmosphérique dans les sols via le développement du réseau racinaire des arbres. Ce projet de recherche visait à : 1) quantifier la biomasse racinaire ligneuse produite annuellement par unité de surface par le Salix miyabeana cultivé en régie intensive à courtes rotations, 2) doser la concentration en C et en N des racines de saule en fonction de leur profondeur et de leur diamètre et 3) déterminer l’influence des propriétés pédoclimatiques du milieu sur la séquestration du carbone organique (Corg) par les racines. Pour y arriver, six souches de saules ont été excavées à partir de huit sites (n=48) et neuf carottes de recolonisation ont été implantées à cinq sites (n=45) pour évaluer la productivité racinaire fine. Les échantillons séchés ont été pesés pour quantifier la biomasse racinaire produite, et ont été analysés pour le C et le N. La productivité en biomasse racinaire ligneuse du saule en plantation pour tout le réseau d'échantillonnage varie de 0,7 – 1,8 Mg/ha/an. La proportion de C dans la biomasse racinaire s’étend de 31,3% à 50,4% et sa variance dans les tissus est expliquée par le diamètre racinaire et par les conditions environnementales des sites de provenance. Les conditions climatiques constituent la principale influence sur la production de biomasse racinaire. La variance de la biomasse racinaire est significativement contrôlée (p :0,004) par la quantité de précipitation de l’été et de l’année qui contrôlent ensemble 83,4 % du r2 ajusté. La précipitation de l’été est inversement liée à la productivité racinaire puisque les protéines expansines des racines sont stimulées par les carences hydriques du sol. La production de racines fines des plantations (1,2 à 2,4 Mg/ha/an) est, elle, plus fortement contrôlée par les conditions pédologiques du site qui expliquent 36,5% de la variance de productivité des racines fines contre 37,5% de la variance expliquée par les facteurs pédoclimatiques. Le P et le N du sol ont des rôles prépondérants sur la production de racines fines. Une disponibilité en P accrue dans le sol stimule la biomasse racinaire fine alors qu’une quantité supérieure de N dans le sol limite la croissance racinaire tout en favorisant la croissance des parties aériennes de la plante. Ce projet a permis d’améliorer notre compréhension des conditions pédologiques et climatiques qui engendrent, au Québec méridional, une productivité et une séquestration en Corg accrue dans le réseau racinaire du saule.
Resumo:
Thc tea industry in lndia is going through a period of crisis. The crisis in brought about mainly by cost caculation and declining or stagnant prices. The impact of the present crisis is felt most by the owners of tea plantations in Kcrala . The present study assumes significance due to the fact that the critic which already affected Keralas tea industry is now threatening to extend to other tea-growing areas in south India. Today, ensuring a favourablc price to the producers via-a-via possibilities or reducing the cost of production through increase in productivity of land and labour are the main considerations. The main purpose of the study is to analyse the factors behind the crisis as well as exploring immediate and long-term measures for the sustained growth of the industry.
Resumo:
Teak plantations were initiated in Kerala in 1842, and extended almost continuously. Among plantations raised by the Forest Department, teak occupies the largest area and a substantial asset base has been created. Of late, several teak growing private companies have come up offering investors high returns from their plantations. However, no study has been carried out in Kerala on the economic status of teak plantations in the government forests and prospects of investing in teak plantation ventures in the private sector. The present study is relevant in presenting the productivity status of teak plantations in government forests in Kerala and its commercial profitability. This will be useful to the government for planning management strategies and investment priorities. The study will also serve as a base—line information for comparative studies.
Resumo:
The importance of oil palm sector for Indonesia is inevitable as the country currently serves as the world’s largest producer of crude palm oil. This paper focuses on the situation of workers on Indonesian oil palm plantations. It attempts to investigate whether the remarkable development of the sector is followed by employment opportunities and income generation for workers. This question is posed within the theoretical framework on the link between trade liberalisation and labour rights, particularly in a labour-intensive and low-skilled sector. Based on extensive field research in Riau, this paper confirms that despite the rapid development of the oil palm plantation sector in Indonesia, the situations of workers in the sector remain deplorable, particularly their employment status and income. This also attests that trade liberalisation in the sector adversely affects labour rights. The poor working conditions also have ramifications for food security at the micro level.
Resumo:
Increased atmospheric deposition of inorganic nitrogen (N) may lead to increased leaching of nitrate (NO3-) to surface waters. The mechanisms responsible for, and controls on, this leaching are matters of debate. An experimental N addition has been conducted at Gardsjon, Sweden to determine the magnitude and identify the mechanisms of N leaching from forested catchments within the EU funded project NITREX. The ability of INCA-N, a simple process-based model of catchment N dynamics, to simulate catchment-scale inorganic N dynamics in soil and stream water during the course of the experimental addition is evaluated. Simulations were performed for 1990-2002. Experimental N addition began in 1991. INCA-N was able to successfully reproduce stream and soil water dynamics before and during the experiment. While INCA-N did not correctly simulate the lag between the start of N addition and NO 2 3 breakthrough, the model was able to simulate the state change resulting from increased N deposition. Sensitivity analysis showed that model behaviour was controlled primarily by parameters related to hydrology and vegetation dynamics and secondarily by in-soil processes.
Resumo:
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an “environmentally friendly” fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Resumo:
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O-3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O-3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O-3 concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Resumo:
Considered as one of the most available radionuclide in soileplant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation.