999 resultados para Conducting Glass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (< 5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Windows are one of the most significant elements in the design of buildings. Whether there are small punched openings in the facade or a completely glazed curtain wall, windows are usually a dominant feature of the building's exterior appearance. From the energy use perspective, windows may also be regarded as thermal holes for a building. Therefore, window design and selection must take both aesthetics and serviceability into consideration. In this paper, using building computer simulation techniques, the effects of glass types on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that a glass type with lower shading coefficient will have a lower building cooling load and total energy use. Through the comparison of results between current and future weather scenarios, it is identified that the pattern found from the current weather scenario would also exist in the future weather scenario, although the scale of change would become smaller. The possible implication of glazing selection in face of global warming is also examined. It is found that compared with its influence on building thermal performance, its influence on the building energy use is relatively small or insignificant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, there has been an increased use of oral history as source material and inspiration for creative products, such as new media productions; visual art; theatre and fiction. The rise of the digital story in museum and library settings reflects a new emphasis on publishing oral histories in forms that are accessible and speak to diverse audiences. Visual artists are embracing oral history as a source of emotional, experiential and thematic authenticity (Anderson 2009 and Brown 2009). Rosemary Neill (2010) observes the rise of documentary and verbatim theatre — where the words of real people are reproduced on-stage — in Australia. Authors such as Dave Eggers (2006), M. J. Hyland (2009), Padma Viswanathan (2008) and Terry Whitebeach (2002) all acknowledge that interviews heavily inform their works of fiction. In such contexts, oral histories are not valued so much for their factual content but as sources that are at once dynamic, evolving, emotionally authentic and ambiguous. How can practice-led researchers design interviews that reflect this emphasis? In this paper, I will discuss how I developed an interview methodology for my own practice-led research project, The Artful Life Story: Oral History and Fiction. In my practice, I draw on oral histories to inform a work of fiction. I developed a methodology for eliciting sensory details and stories around place and the urban environment. I will also read an extract from ‘Evelyn on the Verandah,’ a short story based on an oral history interview with a 21 year-old woman who grew up in New Farm, which will be published in the One Book Many Brisbanes short story anthology in June this year (2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which could stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum, and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there is no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate the osteogenic/cementogenic differentiation of PDLCs in tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr2+ ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in simulated body fluids environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is of great importance to develop multifunctional bioactive scaffolds, which combine angiogenesis capacity, osteostimulation, and antibacterial properties for regenerating lost bone tissues. In order to achieve this aim, we prepared copper (Cu)-containing mesoporous bioactive glass (Cu-MBG) scaffolds with interconnective large pores (several hundred micrometer) and well-ordered mesopore channels (around 5 nm). Both Cu-MBG scaffolds and their ionic extracts could stimulate hypoxia-inducible factor (HIF)-1a and vascular endothelial growth factor(VEGF) expression in human bone marrow stromal cells(hBMSCs). In addition, both Cu-MBG scaffolds and their ionic extracts significantly promoted the osteogenic differentiation of hBMSCs by improving their bone-related gene expression (alkaline phosphatase (ALP), osteopontin(OPN) and osteocalcin (OCN)). Furthermore, Cu-MBG scaffolds could maintain a sustained release of ibuprofen and significantly inhibited the viability of bacteria. This study indicates that the incorporation of Cu2þ ions into MBG scaffolds significantly enhances hypoxia-like tissue reaction leading to the coupling of angiogenesis and osteogenesis. Cu2þ ions play an important role to offer the multifunctional properties of MBG scaffold system. This study has demonstrated that it is possible to develop multifunctional scaffolds by combining enhanced angiogenesis potential, osteostimulation, and antibacterial properties for the treatment of large bone defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The film adaptation of "Rosencrantz and Guildenstern Are Dead"'s constant reallocation of actor and audience roles (or subject and object positions) means that the film’s viewers are as deeply implicated in considering issues of identity, agency and determination as Rosencrantz and Guildenstern are. Tellingly, one of The Player’s outbursts reveals the philosophical connections between observing and being observed in ways that are true of the theatre, but which also transcend it: ‘You don’t understand the humiliation of it. To be tricked out of the single assumption that makes our existence bearable; that somebody is watching.’ In this statement is one of the film’s main concerns; that is, the relationship between knowing the self, knowing others, and being known by others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass Pond is an interactive artwork designed to engender exploration and reflection through an intuitive, tangible interface and a simulation agent. It is being developed using iterative methods. A study has been conducted with the aim of illuminating user experience, interface, design, and performance issues.The paper describes the study methodology and process of data analysis including coding schemes for cognitive states and movements. Analysis reveals that exploration and reflection occurred as well as composing behaviours (unexpected). Results also show that participants interacted to varying degrees. Design discussion includes the artwork's (novel) interface and configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A calorimetric study has shown that glasses along the albite-diopside join in the system albiteanorthite-diopside have positive enthalpies of mixing. Thermodynamic calculations based on these data describe a nearly symmetric, metastable, subliquidus irascibility gap along the join with a critical temperature at 910 K. The existence of the miscibility gap was tested experimentally by annealing an Ab50Di50 glass at 748 K and 823 K. Annealed glasses were examined by optical microscopy and by scanning and transmission electron microscopy. The glasses showed morphological and chemical features consistent with unmixing of two glass phases. The apparent mechanism of phase separation involves initial spinodal decomposition followed by coarsening to produce 0.1 μm–0.3 μm spherical glass phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chinese Ministry of Education (MOE) initiatives to improve the English competence of college students, as well as increased proficiency level of entering college students (Cheng, 2002) have contributed to greater demands on Teaching English as a Foreign Language (TEFL) academics (MOE, 2004), as “the upgrading of national English proficiency, then, is predicated largely on the professional competence of the teaching force” (Hu, 2005, p. 655). For TEFL academics, one component of this competence is the capacity to conduct research (Shu, 2002), which also reflects other changes in Chinese higher education. The aspirations of higher education institutions at all levels have led to more rigorous recruitment policies and promotion requirements (Che, 2004; Wang, 2007), stressing research as an important indicator of academics’ performance (Shi, 2002; Pan, 2006). These changes highlight the role of research in higher education institutions’ efforts to raise their national status and world ranking (Zhang, Wang, & He, 2006), and have exerted influences on faculty’s academic role. Academics are obliged to engage in research activities, and this has posed challenges to teaching-oriented institutions and disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-sectioned samples mounted on glass slides with common petrographic epoxies cannot be easily removed (for subsequent ion-milling) by standard methods such as heating or dissolution in solvents. A method for the removal of such samples using a radio frequency (RF) generated oxygen plasma has been investigated for a number of typical petrographic and ceramic thin sections. Sample integrity and thickness were critical factors that determined the etching rate of adhesive and the survivability of the sample. Several tests were performed on a variety of materials in order to estimate possible heating or oxidation damage from the plasma. Temperatures in the plasma chamber remained below 138°C and weight changes in mineral powders etched for 76 hr were less than ±4%. A crystal of optical grade calcite showed no apparent surface damage after 48 hr of etching. Any damage from the oxygen plasma is apparently confined to the surface of the sample, and is removed during the ion-milling stage of transmission electron microscopy (TEM) sample preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, light gauge steel frame (LSF) wall systems are increasingly used in the building industry. They are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. A composite LSF wall panel system was developed recently, where an insulation layer was used externally between the two plasterboards to improve the fire performance of LSF wall panels. In this research, finite element thermal models of the new composite panels were developed using a finite element program, SAFIR, to simulate their thermal performance under both standard and Eurocode design fire curves. Suitable apparent thermal properties of both the gypsum plasterboard and insulation materials were proposed and used in the numerical models. The developed models were then validated by comparing their results with available standard fire test results of composite panels. This paper presents the details of the finite element models of composite panels, the thermal analysis results in the form of time-temperature profiles under standard and Eurocode design fire curves and their comparisons with fire test results. Effects of using rockwool, glass fibre and cellulose fibre insulations with varying thickness and density were also investigated, and the results are presented in this paper. The results show that the use of composite panels in LSF wall systems will improve their fire rating, and that Eurocode design fires are likely to cause severe damage to LSF walls than standard fires.