998 resultados para Complexes anormaux de palladium


Relevância:

40.00% 40.00%

Publicador:

Resumo:

NCN palladium(II) complexes have been covalently attached to the N- and C-terminus of the dipeptide L-Phe-L-Va-OMe. Remarkably, the hydrolysis of the NCN-Pd(II) L-Val-OMe afforded the corresponding, palladated free amino acid without affecting the metal site. This deprotected amino acid could be coupled to any protein, enzyme or peptidic chain by simple peptide chemistry. This bioorganometallic systems were active as catalysts in the aldol reaction between methyl isocianate and benzaldehyde.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The treatment of [PdCl2(COD)] (COD = 1,5-cyclooctadiene) with 1 and 2 equivalents of 2-(diphenylphosphino)benzaldehyde oxime in dichloromethane at room temperature led to the selective formation of [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH[double bond, length as m-dash]NOH}] (1) and [Pd{κ2-(P,N)-2-Ph2PC6H4CH[double bond, length as m-dash]NOH}2][Cl]2 (2), respectively, which represent the first examples of Pd(II) complexes containing a phosphino-oxime ligand. These compounds, whose structures were fully confirmed by X-ray diffraction methods, were active in the catalytic rearrangement of aldoximes. In particular, using 5 mol% complex 1, a large variety of aldoximes could be cleanly converted into the corresponding primary amides at 100 °C, employing water as solvent and without the assistance of any cocatalyst. Palladium nanoparticles are the active species in the rearrangement process. In addition, when the same reactions were performed employing acetonitrile as solvent, selective dehydration of the aldoximes to form the respective nitriles was observed. For comparative purposes, the catalytic behaviour of an oxime-derived palladacyclic complex has also been briefly evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, electronic absorption and 1H NMR spectra of a suite of novel porphyrinoids derived from meso-bromoporphyrins by palladium-catalysed aminations using ethyl and tert-butylcarbazates are reported. Instead of the expected carbazate-substituted porphyrins, a facile oxidative dearomatisation of the porphyrin ring occurs in high yield, especially for the nickel(II) complexes, resulting in high yields of 5,15-diiminoporphodimethenes (DIPDs). The analogous zinc(II) and free base DIPDs were also characterised, the former by X-ray crystallography. The oxidation and reduction reactions of DIPDs and their precursor carbazate porphyrins were studied. Density Functional Theory (DFT) was used to calculate the optimised geometries and frontier molecular orbitals of DIPD Ni8c and bis(azocarboxylate) 19c, and Time Dependent DFT calculations allowed the prediction of electronic absorption spectra, whose characteristics corresponded well with those of the observed solution spectra. In the latter case, the calculated low-energy absorptions were unlike those of a typical porphyrin, due to the near-degeneracy of the highest filled frontier orbitals, and the wide energy separation between the unfilled orbitals. This feature was present in the observed spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction between PdCl2 and 1-alkyl-2-(arylazo)imidazole (RaaiR') or 1-alkyl-2-(naphthyl-alpha/beta-azo)imidazole (alpha/beta-NaiR') under reflux in ethanol has isolated complexes of compositions Pd(RaaiR')(2)Cl-2 (5, 6) and Pd(alpha/beta-NaiR')(2)Cl-2 (7, 8). The X-ray structure determination of one of the molecules, Pd(alpha-NaiBz)(2)Cl-2 (7c), has reported a trans-PdCl2 configuration, and alpha-NaiBz acts as monodentate N(imidazole) donor ligand. The spectral (IR, UV-vis, H-1 NMR) data support the structure. UV light irradiation (light source: Perkin-Elmer LS 55 spectrofluorimeter, Xenon discharge lamp, lambda = 360-396 nm) in a MeCN solution of the complexes shows E-to-Z isomerization of the coordinated azoimidazole unit. The reverse transformation, Z-to-E, is very slow with visible light irradiation. Quantum yields (phi(E-Z)) of E-to-Z isomerization are calculated, and phi is lower than that of the free ligand but comparable with those of Cd(II) and Hg(II) complexes of the same ligand. The Z-to-E isomerization is a thermally induced process. The activation energy (E-a) of Z-to-E isomerization is calculated by controlled-temperature experimentation. cis-Pd(azoimidazole)Cl-2 complexes (azomidazole acts as N(imidazole) and N(azo) Chelating ligand) do not respond upon light irradiation, which supports the idea that the presence of noncoordinated azo-N to make free azo (-N=N-) function is important to reveal photochromic activity. DFT calculation of Pd(alpha-NaiBz)(2)Cl-2 (7c) has suggested that the HOMO of the molecule is constituted of Pd (32%) and Cl (66%), and hence photo excitation may use the energy of Pd and Cl instead of that of the photofunctional -N=N-Ar motif; thus, the rate of photoisomerization and quantum yield decrease versus the free ligand values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of new chiral palladium-bisphosphinite complexes have been prepared from readily available, naturally occurring chiral alcohols. The complexes were used to efficiently carry out catalytic allylic alkylation of 1,3-diphenylpropene-2-yl acetate with dimethyl malonate. The complexes based on derivatives of ascorbic acid carry out enantioselective alkylations, one of which showed an ee as high as 97%. Based on the structural characterization, it can be surmised that strategic placement of phenyl groups is key to higher enantioselectivities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New chiral diphosphazane ligands of the type Ph(2)PN(S-*CHMePh)PYY' {YY'= Ph(2) (2), O2C6H4 (3); Y= Ph, Y'= Cl {4a (SS), 4b (SR)}, N(2)C(3)HMe(2)-3,5 {5a (SR), 5b (SS)} are synthesised starting from a chiral aminophosphine, Ph(2)PNH(S-*CHMePh) (1). The structure of one of the diastereomer 5a has been confirmed by single crystal X-ray diffraction {Orthorhombic system, P2(1)2(1)2(1); a=10.456 (4), b=15.362 (7), c=17.379 (6) Angstrom, Z=4}. Transition metal mononuclear complexes [Rh{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}(2)](+)(BF4)(-) (6), [PdCl2{eta(2)-(Ph(2)P)(2)N(S-*CHMePh)}] (7) and [PtCl2{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}] (8) have also been synthesised. The structure of the palladium complex 7 is solved by X-ray crystallography {Orthorhombic system, P2(1)2(1)2(1); a=8.746 (2), b=18.086 (2), c=20.811 (3) Angstrom, Z=4}. All these compounds are characterised by micro analyses, IR and NMR spectroscopic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine-and imidazole-based donors have been used for self-selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two-component self-assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non-preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to Pd-II is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H-bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10(-5) to ca. 10(-3) Scm(-1)) at ambient temperature under a relative humidity of circa 98% with low activation energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anionic tripod ligand NaLoMe (L_(oMe) - = [(η^5-C_5H_5)Co{P(O)(OCH_3)_2}_3]^-) reacts with RuO_4 in a biphasic reaction mixture of 1% H_2SO_4 and CCI_4 to afford [(L_(oMe) (HO)Ru^(IV) (µ-O)_2Ru ^(IV)(OH)(L_(oMe)] (1), which is treated with aqueous CF_3S0_3H to generate [(L_(oMe)(H_2O)Ru^(IV) (µ-O)_2R^(IV) (OH_2)(L_(oMe)][CF_3SO_3]_2 ([H_21][CF_3SO_3]_2). Addition of iodosobenzene to an acetonitrile solution of this salt yields [(L_(oMe)(O)Ru^v(µ-0)2Ru^v-(O)(_(LoMe)] (2). The dimer 1 can be reduced chemically or electrochemically to the Ru^(III)- Ru^(III) dimers [(L_(oMe)(H_20)Ru^(III) (µ-OH)_2Ru^(III) (OH_2)(L_(oMe)) ]^2+ and [(L_(oMe)) ^(III) (µ-0Hh(µ-0H2)Ru^(III) (L_(oMe)]^2+ which interconvert in aqueous media. Two electron processes dominate both the bulk chemistry and the electrochemistry of 1. Among these processes are the quasi-reversible Ru^(IV) - Ru^(IV)/Ru^(III)- Ru^(III) and Ru^(III)- Ru^(III)/ Ru^(II)- Ru^(II) reductions and a largely irreversible Ru^(V) - Ru^(V)/ Ru^(IV) - Ru^(IV)/oxidation. The dioxo dimer 2 oxidizes alcohols and aldehydes in organic media to afford 1 and the corresponding aldehydes and acids. Analogously, the Ru^(V) - Ru^(V)/ Ru^(IV)- Ru^(IV) redox wave mediates the electrooxidation of alcohols and aldehydes in aqueous buffer. In this system, substrates can be oxidized completely to CO_2. The kinetic behavior of these oxidations was examined by UV-vis and chronoamperometry, respectively, and the chemistry is typical of metal-oxo complexes, indicating that electronic coupling between two metal centers does not dramatically affect the metal-oxo chemistry. Dimer [H_21]^(2+) also reacts with alcohols, aldehydes, and triphenylphosphine in CH_3CN to afford Ru^(III)- Ru^(III) products including [(L_(oMe))CH_3CN) Ru^(III) (µ-OH)_2 Ru^(III) (NCCH_3)( L_(oMe))][CF_3SO_3]2 (characterized by X-ray crystallography) and the corresponding organic products. Reaction of 1 with formaldehyde in aqueous buffer quantitatively affords the triply bridged dimer [(L_(oMe)Ru^(III) (µ-OH)2- (µ-HCOO) Ru^(III) (L_(oMe)][CF_3SO_3] (characterized by X-ray crystallography). This reaction evidently proceeds by two parallel inner-sphere pathways, one of which is autocatalytic. Neither pathway exhibits a primary isotope effect suggesting the rate determining process could be the formation of an intermediate, perhaps a Ru^(IV) - Ru^(IV) formate adduct. The Ru^(III)- Ru^(III)formate adduct is easily oxidized to the Ru^(IV) - Ru^(IV) analog [(L_(oMe)Ru^(IV)(µ-OH)_2-(µ-HCOO) Ru^(IV) (L_(oMe)][CF_3SO_3], which, after isolation, reacts slowly with aqueous formaldehyde to generate free formate and the Ru^(III)- Ru^(III) formate adduct. These dimers function as catalysts for the electrooxidation of formaldehyde at low anodic potentials (+0.0 V versus SCE in aqueous buffer, pH 8.5) and enhance the activity of Nafion treated palladium/carbon heterogeneous fuel cell catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.

Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.

Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.

Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.

Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation focuses on the incorporation of non-innocent or multifunctional moieties into different ligand scaffolds to support one or multiple metal centers in close proximity. Chapter 2 focuses on the initial efforts to synthesize hetero- or homometallic tri- or dinuclear metal carbonyl complexes supported by para-terphenyl diphosphine ligands. A series of [M2M’(CO)4]-type clusters (M = Ni, Pd; M’ = Fe, Co) could be accessed and used to relate the metal composition to the properties of the complexes. During these studies it was also found that non-innocent behavior was observed in dinuclear Fe complexes that result from changes in oxidation state of the cluster. These studies led to efforts to rationally incorporate central arene moieties capable managing both protons and electrons during small molecule activation.

Chapter 3 discusses the synthesis of metal complexes supported by a novel para-terphenyl diphosphine ligand containing a non-innocent 1,4-hydroquinone moiety as the central arene. A Pd0-hydroquinone complex was found to mediate the activation of a variety of small molecules to form the corresponding Pd0-quinone complexes in a formal two proton ⁄ two electron transformation. Mechanistic investigations of dioxygen activation revealed a metal-first activation process followed by subsequent proton and electron transfer from the ligand. These studies revealed the capacity of the central arene substituent to serve as a reservoir for a formal equivalent of dihydrogen, although the stability of the M-quinone compounds prevented access to the PdII-quinone oxidation state, thus hindering of small molecule transformations requiring more than two electrons per equivalent of metal complex.

Chapter 4 discusses the synthesis of metal complexes supported by a ligand containing a 3,5-substituted pyridine moiety as the linker separating the phenylene phosphine donors. Nickel and palladium complexes supported by this ligand were found to tolerate a wide variety of pyridine nitrogen-coordinated electrophiles which were found to alter central pyridine electronics, and therefore metal-pyridine π-system interactions, substantially. Furthermore, nickel complexes supported by this ligand were found to activate H-B and H-Si bonds and formally hydroborate and hydrosilylate the central pyridine ring. These systems highlight the potential use of pyridine π-system-coordinated metal complexes to reversibly store reducing equivalents within the ligand framework in a manner akin to the previously discussed 1,4-hydroquinone diphosphine ligand scaffold.

Chapter 5 departs from the phosphine-based chemistry and instead focuses on the incorporation of hydrogen bonding networks into the secondary coordination sphere of [Fe44-O)]-type clusters supported by various pyrazolate ligands. The aim of this project is to stabilize reactive oxygenic species, such as oxos, to study their spectroscopy and reactivity in the context of complicated multimetallic clusters. Herein is reported this synthesis and electrochemical and Mössbauer characterization of a series of chloride clusters have been synthesized using parent pyrazolate and a 3-aminophenyl substituted pyrazolate ligand. Efforts to rationally access hydroxo and oxo clusters from these chloride precursors represents ongoing work that will continue in the group.

Appendix A discusses attempts to access [Fe3Ni]-type clusters as models of the enzymatic active site of [NiFe] carbon monoxide dehydrogenase. Efforts to construct tetranuclear clusters with an interstitial sulfide proved unsuccessful, although a (μ3-S) ligand could be installed through non-oxidative routes into triiron clusters. While [Fe3Ni(μ4-O)]-type clusters could be assembled, accessing an open heterobimetallic edge site proved challenging, thus prohibiting efforts to study chemical transformations, such as hydroxide attack onto carbon monoxide or carbon dioxide coordination, relevant to the native enzyme. Appendix B discusses the attempts to synthesize models of the full H-cluster of [FeFe]-hydrogenase using a bioinorganic approach. A synthetic peptide containing three cysteine donors was successfully synthesized and found to chelate a preformed synthetic [Fe4S4] cluster. However, efforts to incorporate the diiron subsite model complex proved challenging as the planned thioester exchange reaction was found to non-selectively acetylate the peptide backbone, thus preventing the construction of the full six-iron cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The B3LYP hybrid density functional method has been carried Out to Study theoretically the mechanisin of Pd(0)-catalyzed alkyne cyanoboration reaction. Both the intermolecular and intramolecular alkyne cyanoboration reactions were studied. For each reaction, three paths were proposed. In path A of each reaction, the first step is B-CN bond oxidative addition to bisphosphine complex Pd(PH3)(2), in path B of each reaction, the first step is alkyne coordination to bisphosphine complex Pd(PH3)2, and in path C of each reaction, the first step is the PH3 dissociation front Pd(PH3)2 to form monophosphine complex Pd(PH3) For both reactions, path B is favored.