990 resultados para Comparative Genomic Hybridization,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microarray gene expression profiling is a high-throughput system used to identify differentially expressed genes and regulation patterns, and to discover new tumor markers. As the molecular pathogenesis of meningiomas and schwannomas, characterized by NF2 gene alterations, remains unclear and suitable molecular targets need to be identified, we used low density cDNA microarrays to establish expression patterns of 96 cancer-related genes on 23 schwannomas, 42 meningiomas and 3 normal cerebral meninges. We also performed a mutational analysis of the NF2 gene (PCR, dHPLC, Sequencing and MLPA), a search for 22q LOH and an analysis of gene silencing by promoter hypermethylation (MS-MLPA). Results showed a high frequency of NF2 gene mutations (40%), increased 22q LOH as aggressiveness increased, frequent losses and gains by MLPA in benign meningiomas, and gene expression silencing by hypermethylation. Array analysis showed decreased expression of 7 genes in meningiomas. Unsupervised analyses identified 2 molecular subgroups for both meningiomas and schwannomas showing 38 and 20 differentially expressed genes, respectively, and 19 genes differentially expressed between the two tumor types. These findings provide a molecular subgroup classification for meningiomas and schwannomas with possible implications for clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endometriosis is a gynecologic disease characterized by the presence of endometrial tissue outside the uterine cavity. Although 15% of the female population in reproductive age is affected by endometriosis, its pathogenesis remains unclear. According to the most accepted pathogenesis hypothesis, endometrial fragments from the menstrual phase are transported through the uterine tubes to the peritoneal cavity, where they undergo implantation and growth, invading adjacent tissues. However, the establishment of the disease requires that endometrial cells present molecular characteristics favoring the onset and progression of ectopic implantation. In this investigation, we analyzed the differential gene expression profiles of peritoneal and ovarian endometriotic lesions compared to the endometrial tissue of nonaffected women using rapid subtraction hybridization (RaSH). In our study, this method was applied to samples of endometriotic lesions from affected women and to biopsies of endometrium of healthy women without endometriosis, where we could identify 126 deregulated genes. To evaluate the expression of genes found by RaSH method, we measured LOXL1, HTRA1, and SPARC genes by real-time polymerase chain reaction. Significant different expression was obtained for HTRA1 and LOXL1, upregulated in the ectopic endometrium, suggesting that these genes are involved in the physiopathology of endometriosis and may favor the viability of endometrial cells at ectopic sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synovial sarcomas are high-grade malignant mesenchymal tumors that account for 10% of all soft-tissue sarcomas. Almost 95% of these tumors are characterized by a nonrandom chromosomal abnormality, t(X;18)(p11.2;q11.2), that is observed in both biphasic and monophasic variants. In this article, we present the case of a 57-year-old woman diagnosed with high-grade biphasic synovial sarcoma in which conventional cytogenetic analysis revealed the constant presence of a unique t(18;22)(q12;q13), in addition to trisomy 8. The rearrangement was confirmed by fluorescence in situ hybridization. The use of the whole chromosome painting probes WCPX did not detect any rearrangements involving chromosome X, although reverse-transcriptase polymerase chain reaction (PCR) analysis demonstrated the conspicuous presence of a SYT/SXX1 fusion gene. Spectral karyotyping (SKY) was also performed and revealed an insertion of material from chromosome 18 into one of the X chromosomes at position Xp11.2. Thus, the karyotype was subsequently interpreted as 47,X,der(X)ins(X;18) (p11.2;q11.2q11.2),der(18)del(18)(q11.2q11.2)t(18;22)(q12;q13),der(22)t(18;22). Real-time PCR analysis of BCL2 expression in the tumor sample showed a 433-fold increase. This rare finding exemplifies that thorough molecular-cytogenetic analyses are required to elucidate complex and/or cryptic tumor-specific translocations. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of small-cell lung cancers (SCLCs) express p16 but not pRb, Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC acid MCC, we wished to determine if this was also the case in MCC, Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and I on 9p. No loss of heterozygosity (LO H) was peen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p, Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined, Half of all informative cases had LOH at D95168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168, A second region (InFNA-D9S126) showed L0H in 10(44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all Il tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p 14' antibody, These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular characterization of balanced chromosomal rearrangements have always been of advantage in identifying disease-causing genes. Here, we describe the breakpoint mapping of a de novo balanced translocation t(7;12)(q11.22;q14.2) in a patient presenting with a failure to thrive associated with moderate mental retardation, facial anomalies, and chronic constipation. The localization of the breakpoints and the co-occurrence of Williams-Beuren syndrome and 12q14 microdeletion syndrome phenotypes suggested that the expression of some of the dosage-sensitive genes of these two segmental aneuploidies were modified in cells of the proposita. However, we were unable to identify chromosomes 7 and/or 12-mapping genes that showed disturbed expression in the lymphoblastoids of the proposita. This case showed that position-effect might operate in some tissues, but not in others. It also illustrates the overlap of phenotypes presented by patients with the recently described 12q14 structural rearrangements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase and a nuclease that restricts HIV-1 in noncycling cells. Germ-line mutations in SAMHD1 have been described in patients with Aicardi-Goutières syndrome (AGS), a congenital autoimmune disease. In a previous longitudinal whole genome sequencing study of chronic lymphocytic leukemia (CLL), we revealed a SAMHD1 mutation as a potential founding event. Here, we describe an AGS patient carrying a pathogenic germ-line SAMHD1 mutation who developed CLL at 24 years of age. Using clinical trial samples, we show that acquired SAMHD1 mutations are associated with high variant allele frequency and reduced SAMHD1 expression and occur in 11% of relapsed/refractory CLL patients. We provide evidence that SAMHD1 regulates cell proliferation and survival and engages in specific protein interactions in response to DNA damage. We propose that SAMHD1 may have a function in DNA repair and that the presence of SAMHD1 mutations in CLL promotes leukemia development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural genomic abnormalities play a key role in the pathogenesis of human disorders and represent one of the first causes of mental impairment, complex syndromes and tumors. In order to detect these chromosomal abnormalities, many methodologies have been developed with limits. The new ARRAY based Comparative Genomic Hybridization (ARRAY CGH) is a revolutionary approach which allows to characterize very small genetic abnormalities undetectable by the standard approaches and in the absence of any associated clinical information. The aim of this article is to describe why the application of a new array CGH methodology is necessary in the etiological search for genetic diseases, what the limits of the standard approaches are and to whom arrayCGH analyses can be applied in a pediatric environment. Examples of our practice will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To report the case of identical dichorionic diamniotic female twins with unilateral retinoblastoma in 13q deletion syndrome. METHODS: Clinical and ophthalmoscopic evaluation, combination of multiple ligation-dependent probe amplification, array-comparative genomic hybridization analyses, and magnetic resonance imaging were performed. RESULTS: Peculiar facial features, marked hypotonia, gastroesophageal reflux, interatrial septal defect with left to right shunt and light dilatation of right chambers, 5th finger hypoplasia, 3rd-5th toes clinodactyly, 2nd toe overlapped to 3rd toe, and cutis marmorata were found. Ophthalmoscopic evaluation revealed unilateral retinoblastoma in both girls. Magnetic resonance imaging detected corpus callosum hypoplasia in both twins. A 34.4-Mb deletion involving bands 13q13.2-q21.33 and including the RB1 gene was identified in both twins. The deletion was not present in the DNA of their parents and older brother. CONCLUSIONS: Dysmorphic features in children must be always suspicious of 13q deletion syndrome and a short ophthalmoscopic follow-up is necessary to detect the presence of a retinoblastoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small supernumerary marker chromosomes (sSMCs) are structurally abnormal chromosomes that cannot be characterized by karyotype. In many prenatal cases of de novo sSMC, the outcome of pregnancy is difficult to predict because the euchromatin content is unclear. This study aimed to determine the presence or absence of euchromatin material of 39 de novo prenatally ascertained sSMC by array-comparative genomic hybridization (array-CGH) or single nucleotide polymorphism (SNP) array. Cases were prospectively ascertained from the study of 65,000 prenatal samples [0.060%; 95% confidence interval (CI), 0.042-0.082]. Array-CGH showed that 22 markers were derived from non-acrocentric markers (56.4%) and 7 from acrocentic markers (18%). The 10 additional cases remained unidentified (25.6%), but 7 of 10 could be further identified using fluorescence in situ hybridization; 69% of de novo sSMC contained euchromatin material, 95.4% of which for non-acrocentric markers. Some sSMC containing euchromatin had a normal phenotype (31% for non-acrocentric and 75% for acrocentric markers). Statistical differences between normal and abnormal phenotypes were shown for the size of the euchromatin material (more or less than 1 Mb, p = 0.0006) and number of genes (more or less than 10, p = 0.0009). This study is the largest to date and shows the utility of array-CGH or SNP array in the detection and characterization of de novo sSMC in a prenatal context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Carnitine is a key molecule in energy metabolism that helps transport activated fatty acids into the mitochondria. Its homeostasis is achieved through oral intake, renal reabsorption and de novo biosynthesis. Unlike dietary intake and renal reabsorption, the importance of de novo biosynthesis pathway in carnitine homeostasis remains unclear, due to lack of animal models and description of a single patient defective in this pathway. CASE PRESENTATION: We identified by array comparative genomic hybridization a 42 months-old girl homozygote for a 221 Kb interstitial deletions at 11p14.2, that overlaps the genes encoding Fibin and butyrobetaine-gamma 2-oxoglutarate dioxygenase 1 (BBOX1), an enzyme essential for the biosynthesis of carnitine de novo. She presented microcephaly, speech delay, growth retardation and minor facial anomalies. The levels of almost all evaluated metabolites were normal. Her serum level of free carnitine was at the lower limit of the reference range, while her acylcarnitine to free carnitine ratio was normal. CONCLUSIONS: We present an individual with a completely defective carnitine de novo biosynthesis. This condition results in mildly decreased free carnitine level, but not in clinical manifestations characteristic of carnitine deficiency disorders, suggesting that dietary carnitine intake and renal reabsorption are sufficient to carnitine homeostasis. Our results also demonstrate that haploinsufficiency of BBOX1 and/or Fibin is not associated with Primrose syndrome as previously suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-grade osteosarcoma is a rare malignancy that may be subdivided into two main subgroups on the basis of location in relation to the bone cortex, that is, parosteal osteosarcoma and low-grade central osteosarcoma. Their histological appearance is quite similar and characterized by spindle cell stroma with low-to-moderate cellularity and well-differentiated anastomosing bone trabeculae. Low-grade osteosarcomas have a simple genetic profile with supernumerary ring chromosomes comprising amplification of chromosome 12q13-15, including the cyclin-dependent kinase 4 (CDK4) and murine double-minute type 2 (MDM2) gene region. Low-grade osteosarcoma can be confused with fibrous and fibro-osseous lesions such as fibromatosis and fibrous dysplasia on radiological and histological findings. We investigated MDM2-CDK4 immunohistochemical expression in a series of 72 low-grade osteosarcomas and 107 fibrous or fibro-osseous lesions of the bone or paraosseous soft tissue. The MDM2-CDK4 amplification status of low-grade osteosarcoma was also evaluated by comparative genomic hybridization array in 18 cases, and the MDM2 amplification status was evaluated by fluorescence in situ hybridization or quantitative real-time polymerase chain reaction in 31 cases of benign fibrous and fibro-osseous lesions. MDM2-CDK4 immunostaining and MDM2 amplification by fluorescence in situ hybridization or quantitative real-time polymerase chain reaction were investigated in a control group of 23 cases of primary high-grade bone sarcoma, including 20 conventional high-grade osteosarcomas, two pleomorphic spindle cell sarcomas/malignant fibrous histiocytomas and one leiomyosarcoma. The results showed that MDM2 and/or CDK4 immunoreactivity was present in 89% of low-grade osteosarcoma specimens. All benign fibrous and fibro-osseous lesions and the tumors of the control group were negative for MDM2 and CDK4. These results were consistent with the MDM2 and CDK4 amplification results. In conclusion, immunohistochemical expression of MDM2 and CDK4 is specific and provides sensitive markers for the diagnosis of low-grade osteosarcomas, helping to differentiate them from benign fibrous and fibro-osseous lesions, particularly in cases with atypical radio-clinical presentation and/or limited biopsy samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intimal sarcoma (IS) is a rare, malignant, and aggressive tumor that shows a relentless course with a concomitant low survival rate and for which no effective treatment is available. In this study, 21 cases of large arterial blood vessel IS were analyzed by immunohistochemistry and fluorescence in situ hybridization and selectively by karyotyping, array comparative genomic hybridization, sequencing, phospho-kinase antibody arrays, and Western immunoblotting in search for novel diagnostic markers and potential molecular therapeutic targets. Ex vivo immunoassays were applied to test the sensitivity of IS primary tumor cells to the receptor tyrosine kinase (RTK) inhibitors imatinib and dasatinib. We showed that amplification of platelet-derived growth factor receptor α (PDGFRA) is a common finding in IS, which should be considered as a molecular hallmark of this entity. This amplification is consistently associated with PDGFRA activation. Furthermore, the tumors reveal persistent activation of the epidermal growth factor receptor (EGFR), concurrent to PDGFRA activation. Activated PDGFRA and EGFR frequently coexist with amplification and overexpression of the MDM2 oncogene. Ex vivo immunoassays on primary IS cells from one case showed the potency of dasatinib to inhibit PDGFRA and downstream signaling pathways. Our findings provide a rationale for investigating therapies that target PDGFRA, EGFR, or MDM2 in IS. Given the clonal heterogeneity of this tumor type and the potential cross-talk between the PDGFRA and EGFR signaling pathways, targeting multiple RTKs and aberrant downstream effectors might be required to improve the therapeutic outcome for patients with this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome). We now report that autosomal-recessive omodysplasia, a genetic condition characterized by short-limbed short stature, craniofacial dysmorphism, and variable developmental delay, maps to chromosome 13 (13q31.1-q32.2) and is caused by point mutations or by larger genomic rearrangements in glypican 6 (GPC6). All mutations cause truncation of the GPC6 protein and abolish both the HS-binding site and the GPI-bearing membrane-associated domain, and thus loss of function is predicted. Expression studies in microdissected mouse growth plate revealed expression of Gpc6 in proliferative chondrocytes. Thus, GPC6 seems to have a previously unsuspected role in endochondral ossification and skeletal growth, and its functional abrogation results in a short-limb phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.