65 resultados para Compactification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

∗ This work was partially supported by the National Foundation for Scientific Researches at the Bulgarian Ministry of Education and Science under contract no. MM-427/94.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we study aspects of (0,2) superconformal field theories (SCFTs), which are suitable for compactification of the heterotic string. In the first part, we study a class of (2,2) SCFTs obtained by fibering a Landau-Ginzburg (LG) orbifold CFT over a compact K\"ahler base manifold. While such models are naturally obtained as phases in a gauged linear sigma model (GLSM), our construction is independent of such an embedding. We discuss the general properties of such theories and present a technique to study the massless spectrum of the associated heterotic compactification. We test the validity of our method by applying it to hybrid phases of GLSMs and comparing spectra among the phases. In the second part, we turn to the study of the role of accidental symmetries in two-dimensional (0,2) SCFTs obtained by RG flow from (0,2) LG theories. These accidental symmetries are ubiquitous, and, unlike in the case of (2,2) theories, their identification is key to correctly identifying the IR fixed point and its properties. We develop a number of tools that help to identify such accidental symmetries in the context of (0,2) LG models and provide a conjecture for a toric structure of the SCFT moduli space in a large class of models. In the final part, we study the stability of heterotic compactifications described by (0,2) GLSMs with respect to worldsheet instanton corrections to the space-time superpotential following the work of Beasley and Witten. We show that generic models elude the vanishing theorem proved there, and may not determine supersymmetric heterotic vacua. We then construct a subclass of GLSMs for which a vanishing theorem holds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Goodwillie’s homotopy functor calculus constructs a Taylor tower of approximations toF , often a functor from spaces to spaces. Weiss’s orthogonal calculus provides a Taylortower for functors from vector spaces to spaces. In particular, there is a Weiss towerassociated to the functor V ÞÑ FpSVq, where SVis the one-point compactification of V .In this paper, we give a comparison of these two towers and show that when F isanalytic the towers agree up to weak equivalence. We include two main applications, oneof which gives as a corollary the convergence of the Weiss Taylor tower of BO. We alsolift the homotopy level tower comparison to a commutative diagram of Quillen functors,relating model categories for Goodwillie calculus and model categories for the orthogonal calculus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective in this thesis is to study the pseudo-metric and topological structure of the space of group equivariant non-expansive operators (GENEOs). We introduce the notions of compactification of a perception pair, collectionwise surjectivity, and compactification of a space of GENEOs. We obtain some compactification results for perception pairs and the space of GENEOs. We show that when the data spaces are totally bounded and endow the common domains with metric structures, the perception pairs and every collectionwise surjective space of GENEOs can be embedded isometrically into the compact ones through compatible embeddings. An important part of the study of topology of the space of GENEOs is to populate it in a rich manner. We introduce the notion of a generalized permutant and show that this concept too, like that of a permutant, is useful in defining new GENEOs. We define the analogues of some of the aforementioned concepts in a graph theoretic setting, enabling us to use the power of the theory of GENEOs for the study of graphs in an efficient way. We define the notions of a graph perception pair, graph permutant, and a graph GENEO. We develop two models for the theory of graph GENEOs. The first model addresses the case of graphs having weights assigned to their vertices, while the second one addresses weighted on the edges. We prove some new results in the proposed theory of graph GENEOs and exhibit the power of our models by describing their applications to the structural study of simple graphs. We introduce the concept of a graph permutant and show that this concept can be used to define new graph GENEOs between distinct graph perception pairs, thereby enabling us to populate the space of graph GENEOs in a rich manner and shed more light on its structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poset associahedra are a family of convex polytopes recently introduced by Pavel Galashin in 2021. The associahedron An is an (n-2)-dimensional convex polytope whose facial structure encodes the ways of parenthesizing an n-letter word (among several equivalent combinatorial objects). Associahedra are deeply studied polytopes that appear naturally in many areas of mathematics: algebra, combinatorics, geometry, topology... They have many presentations and generalizations. One of their incarnations is as a compactification of the configuration space of n points on a line. Similarly, the P-associahedron of a poset P is a compactification of the configuration space of order preserving maps from P to R. Galashin presents poset associahedra as combinatorial objects and shows that they can be realized as convex polytopes. However, his proof is not constructive, in the sense that no explicit coordinates are provided. The main goal of this thesis is to provide an explicit construction of poset associahedra as sections of graph associahedra, thus solving the open problem stated in Remark 1.5 of Galashin's paper.