888 resultados para Commonsense reasoning
Resumo:
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating the treatment of possibilistic uncertainty at the object-language level. In spite of its expressive power, an important limitation in P-DeLP is that imprecise, fuzzy information cannot be expressed in the object language. One interesting alternative for solving this limitation is the use of PGL+, a possibilistic logic over Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow expressing disjunctive information about the unknown value of a variable, in the sense of a magnitude, modelled as a (unary) predicate. The aim of this article is twofold: firstly, we formalize DePGL+, a possibilistic defeasible logic programming language that extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants and a fuzzy unification mechanism for them. Secondly, we propose a way to handle conflicting arguments in the context of the extended framework.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
BACKGROUND: Pain assessment in mechanically ventilated patients is challenging, because nurses need to decode pain behaviour, interpret pain scores, and make appropriate decisions. This clinical reasoning process is inherent to advanced nursing practice, but is poorly understood. A better understanding of this process could contribute to improved pain assessment and management. OBJECTIVE: This study aimed to describe the indicators that influence expert nurses' clinical reasoning when assessing pain in critically ill nonverbal patients. METHODS: This descriptive observational study was conducted in the adult intensive care unit (ICU) of a tertiary referral hospital in Western Switzerland. A purposive sample of expert nurses, caring for nonverbal ventilated patients who received sedation and analgesia, were invited to participate in the study. Data were collected in "real life" using recorded think-aloud combined with direct non-participant observation and brief interviews. Data were analysed using deductive and inductive content analyses using a theoretical framework related to clinical reasoning and pain. RESULTS: Seven expert nurses with an average of 7.85 (±3.1) years of critical care experience participated in the study. The patients had respiratory distress (n=2), cardiac arrest (n=2), sub-arachnoid bleeding (n=1), and multi-trauma (n=2). A total of 1344 quotes in five categories were identified. Patients' physiological stability was the principal indicator for making decision in relation to pain management. Results also showed that it is a permanent challenge for nurses to discriminate situations requiring sedation from situations requiring analgesia. Expert nurses mainly used working knowledge and patterns to anticipate and prevent pain. CONCLUSIONS: Patient's clinical condition is important for making decision about pain in critically ill nonverbal patients. The concept of pain cannot be assessed in isolation and its assessment should take the patient's clinical stability and sedation into account. Further research is warranted to confirm these results.
Resumo:
In this paper we discuss the use of digital data by the Swiss Federal Criminal Court in a recent case of attempted homicide. We use this case to examine drawbacks for the defense when the presentation of scientific evidence is partial, especially when the only perspective mentioned is that of the prosecution. We tackle this discussion at two distinct levels. First, we pursue an essentially non-technical presentation of the topic by drawing parallels between the court's summing up of the case and flawed patterns of reasoning commonly seen in other forensic disciplines, such as DNA and particle traces (e.g., gunshot residues). Then, we propose a formal analysis of the case, using elements of probability and graphical probability models, to justify our main claim that the partial presentation of digital evidence poses a risk to the administration of justice in that it keeps vital information from the defense. We will argue that such practice constitutes a violation of general principles of forensic interpretation as established by forensic science literature and current recommendations by forensic science interest groups (e.g., the European Network of Forensic Science Institutes). Finally, we posit that argument construction and analysis using formal methods can help replace digital evidence appropriately into context and thus support a sound evaluation of the evidence.
Resumo:
Across Latin America 420 indigenous languages are spoken. Spanish is considered a second language in indigenous communities and is progressively introduced in education. However, most of the tools to support teaching processes of a second language have been developed for the most common languages such as English, French, German, Italian, etc. As a result, only a small amount of learning objects and authoring tools have been developed for indigenous people considering the specific needs of their population. This paper introduces Multilingual–Tiny as a web authoring tool to support the virtual experience of indigenous students and teachers when they are creating learning objects in indigenous languages or in Spanish language, in particular, when they have to deal with the grammatical structures of Spanish. Multilingual–Tiny has a module based on the Case-based Reasoning technique to provide recommendations in real time when teachers and students write texts in Spanish. An experiment was performed in order to compare some local similarity functions to retrieve cases from the case library taking into account the grammatical structures. As a result we found the similarity function with the best performance
Resumo:
The aim of this research was to understand the reasoning developed by medical students in a public university in Brazil. This research on education included semi-structured interviews and film recordings of interns discussing 10 clinical cases. A sample of 16 interns analyzed cases presented on a notebook computer with a webcam. They were instructed to verbalize all their thoughts on the procedures they would use. The film recordings and transcripts of the interviews were analyzed. Quantitative data was evaluated using Yates' chi-squared test and speech analysis was used to evaluate the transcripts. The theme worked on in the practice of reasoning was: the student's perceptions of their clinical practice. Of the 160 diagnoses, 57% were done with analytical reasoning and 43% with non-analytical reasoning. The hypothetical deductive method was employed by 31% of the interns and the inductive method was employed by 69%. The diagnostic accuracy was 81% correct for easy cases and 85% correct for difficult cases. We observed two empirical categories: the cognitive universe of the student and the patient's context.
Resumo:
Case-based reasoning (CBR) is a recent approach to problem solving and learning that has got a lot of attention over the last years. In this work, the CBR methodology is used to reduce the time and amount of resources spent on carry out experiments to determine the viscosity of the new slurry. The aim of this work is: to develop a CBR system to support the decision making process about the type of slurries behavior, to collect a sufficient volume of qualitative data for case base, and to calculate the viscosity of the Newtonian slurries. Firstly in this paper, the literature review about the types of fluid flow, Newtonian and non-Newtonian slurries is presented. Some physical properties of the suspensions are also considered. The second part of the literature review provides an overview of the case-based reasoning field. Different models and stages of CBR cycles, benefits and disadvantages of this methodology are considered subsequently. Brief review of the CBS tools is also given in this work. Finally, some results of work and opportunities for system modernization are presented. To develop a decision support system for slurry viscosity determination, software application MS Office Excel was used. Designed system consists of three parts: workspace, the case base, and section for calculating the viscosity of Newtonian slurries. First and second sections are supposed to work with Newtonian and Bingham fluids. In the last section, apparent viscosity can be calculated for Newtonian slurries.
Resumo:
School leaders face difficult decisions regarding discipline matters. Often, such decisions play an important role in determining the moral tone of the school and the health of the school community. Many stakeholders are affected by the outcome of such decisions. Codes of conduct, board and school policies, and discipline meetings are often shrouded under secrecy, making the discipline process mysterious. .; In this study I examined the process of moral reasoning. I sought to determine the extent to which school leaders were aware that they were involved in a process of moral reasoning, and ftirthermore, what kind of moral reasoning they practiced. As well, I investigated the ethical grounds and foundations underlying moral reasoning. Thus, in this study I probed the awareness of the process of moral reasoning and sought to find the ethical grounding of decision making. This qualitative study featured short field research. The process involved individual interviews with three different participants: school leaders of a public. Catholic, and an independent school. It found that each school leader practiced moral reasoning to varying degrees through the discipline process. It also explored the possible democratization of moral reasoning by linking to concepts such as fairness, due process, public accountability, and greater participation in the administering of discipline. This study has implications for practice, theory, and future research. The examination of school leaders as the primary focus for discipline matters opens the door to future research that could explore differences between the school systems and possibly other parties affected by moral reasoning in discipline cases.
Resumo:
In this study of 109 adolescents from the eighth grade of seven public elementary schools in Ontario, the relationship among adolescents’ violent video game playing patterns, habits and attitudes, their levels of moral reasoning, and their attitudes towards violence in real life was investigated. In addition, gender differences were addressed. The mixed-methodology was employed combining qualitative and quantitative data. The research results confirmed that playing video games in general is a very popular activity among those adolescents. Significant negative relationship was found between adolescents’ amount of time playing violent video games during the day and their scores on The Sociomoral Reflection Measure. Significant difference was also found between adolescents who play violent video games and those who do not play violent video games on their scores on The Attitudes Towards Violence Scale. Boys and girls significantly differed in the amount of playing video games during the day, the reasons for playing video games, their favourite video game choices, and their favourite video game character choices. Boys and girls also significantly differed on their choices of personality traits of selected video game characters, the identification with video game characters, and their mood experiences while playing video games. The findings are put into the educational context and the context of normal development, and suggestions are given for parents, for educators, and for future violent video game research.
Resumo:
Formal verification of software can be an enormous task. This fact brought some software engineers to claim that formal verification is not feasible in practice. One possible method of supporting the verification process is a programming language that provides powerful abstraction mechanisms combined with intensive reuse of code. In this thesis we present a strongly typed functional object-oriented programming language. This language features type operators of arbitrary kind corresponding to so-called type protocols. Sub classing and inheritance is based on higher-order matching, i.e., utilizes type protocols as basic tool for reuse of code. We define the operational and axiomatic semantics of this language formally. The latter is the basis of the interactive proof assistant VOOP (Verified Object-Oriented Programs) that allows the user to prove equational properties of programs interactively.
Resumo:
Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras.
Resumo:
Document de travail
Resumo:
article