982 resultados para Combustion Aerosols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Päästöjen vähentäminen on ollut viime vuosina tärkeässä osassa polttomoottoreita kehitettäessä.Monet viralliset tahot asettavat uusia tiukempia päästörajoituksia. Päästörajatovat tyypillisesti olleet tiukimmat autoteollisuuden valmistamille pienille nopeakäyntisille diesel-moottoreille, mutta viime aikoina paineita on kohdistunut myös suurempiin keskinopeisiin ja hidaskäyntisiin diesel-moottoreihin. Päästörajat ovat erilaisia riippuen moottorin tyypistä, käytetystä polttoaineesta ja paikasta missä moottoria käytetään johtuen erilaisista paikallisista laeista ja asetuksista. Eniten huomiota diesel-moottorin päästöissä täytyy kohdistaa typen oksideihin, savun muodostukseen sekä partikkeleihin. Laskennallisen virtausmekaniikan (CFD) avulla on hyvät mahdollisuudet tutkia diesel-moottorin sylinterissä tapahtuvia ilmiöitä palamisen aikana. CFD on hyödyllinen työkalu arvioitaessa moottorin suorituskykyä ja päästöjen muodostumista. CFD:llä on mahdollista testata erilaisten parametrien ja geometrioiden vaikutusta ilman kalliita moottorinkoeajoja. CFD:tä voidaan käyttää myös opetustarkoituksessa lisäämään paloprosessin tuntemusta. Tulevaisuudessa palamissimuloinnit CFD:llä tulevat epäilemättä olemaan tärkeä osa moottorin kehityksessä. Tässä diplomityössä on tehty palamissimuloinnit kahteen erilaisilla poittoaineenruiskutuslaitteistoilla varustettuun Wärtsilän keskinopeaan diesel-moottoriin. W46 moottorin ruiskutuslaitteisto on perinteinen mekaanisesti ohjattu pumppusuutin ja W46-CR moottorissa on elektronisesti ohjattu 'common rail' ruiskutuslaitteisto. Näiden moottorien ja käytössä olevien ruiskutusprofiilien lisäksi on simuloinneilla testattu erilaisia uusia ruiskutusprofiileja, jotta erityyppisten profiilien hyvät ja huonot ominaisuudet tulisivat selville. Matalalla kuormalla kiinnostuksen kohteena on nokipäästöjen muodostus ja täydellä kuormalla NOx-päästöjen muodostus ja polttoaineen kulutus. Simulointien tulokset osoittivat, että noen muodostusta matalalla kuormalla voidaan selvästi vähentää monivaiheisella ruiskutuksella, jossa yksi ruiskutusjakso jaetaan kahteen tai useampaan jaksoon. Erityisen tehokas noen vähentämisessä vaikuttaa olevan ns. jälkiruiskutus (post injection). Matalat NOx-päästöt ja hyvä polttoaineen kulutus täydellä kuormalla on mahdollista saavuttaaasteittain nostettavalla ruiskutusnopeudella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2. The technique typically employs a dual fluidized bed system where a metal oxide is used as a solid oxygen carrier that transfers the oxygen from combustion air to the fuel. The oxygen carrier is looping between the air reactor, where it is oxidized by the air, and the fuel reactor, where it is reduced by the fuel. Hence, air is not mixed with the fuel, and outgoing CO2 does not become diluted by the nitrogen, which gives a possibility to collect the CO2 from the flue gases after the water vapor is condensed. CLC is being proposed as a promising and energy efficient carbon capture technology, since it can achieve both an increase in power station efficiency simultaneously with low energy penalty from the carbon capture. The outcome of a comprehensive literature study concerning the current status of CLC development is presented in this thesis. Also, a steady state model of the CLC process, based on the conservation equations of mass and energy, was developed. The model was used to determine the process conditions and to calculate the reactor dimensions of a 100 MWth CLC system with bunsenite (NiO) as oxygen carrier and methane (CH4) as fuel. This study has been made in Oxygen Carriers and Their Industrial Applications research project (2008 – 2011), funded by the Tekes – Functional Material program. I would like to acknowledge Tekes and participating companies for funding and all project partners for good and comfortable cooperation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of coal combustion kinetics is crucial for burner design. This work aims to contribute on this issue by determining the kinetics of a particular Brazilian bituminous coal. Non-isothermal thermogravimetry was applied for determining both the pre-exponential factor and the activation energy. Coal samples of 10 mg and 775 mm mean size were used in synthetic air atmospheres (21 % O2). Heating rates from 10 to 50 ºC/min were applied until the temperature reached 850 ºC, which was kept constant until burnout. The activation energy for the primary and the secondary combustion resulted, respectively, in 135.1 kJ/mol and 85.1 kJ/mol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2 and mixed CeO2-ZrO2 nanopowders were synthesized and efficiently deposited onto cordierite substrates, with the evaluation of their morphologic and structural properties through XRD, SEM, and FTIR. The modified substrates were employed as outer heterogeneous catalysts for reducing the soot originated from the diesel and diesel/biodiesel blends incomplete combustion. Their activity was evaluated in a diesel stationary motor, and a comparative analysis of the soot emission was carried out through diffuse reflectance spectroscopy. The analyses have shown that the catalyst-impregnated cordierite samples are very efficient for soot oxidation, being capable of reducing the soot emission in more than 60%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium catalysts supported on alumina and zirconia were prepared by the impregnation method and calcined at 600 and 1000 ºC. Catalysts were characterized by BET measurements, XRD, XPS, O2-TPD and tested in methane combustion through temperature programmed surface reaction. Alumina supported catalysts were slightly more active than zirconia supported catalysts, but after initial heat treatment at 1000 ºC, zirconia supported palladium catalyst showed better performance above 500 ºC A pattern between temperature interval stability of PdOx species and activity was observed, where better PdOx stability was associated with more active catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the effect of different fuel mixtures on the operation of circulating fluidized bed (CFB) boiler. The applicability of heat balance modeling software IPSEpro to simulate CFB boiler operation is also investigated. The work discusses various types of boilers and methods of boiler operation. The fuel properties and the possible fuel influence on the boiler efficiency are described. Various biofuel types that are possible to use in combination with other fuels are presented. Some examples of the fuel mixtures use are given. A CFB boiler model has been constructed using IPSEpro and applied to analyze boiler operation outside design conditions. In the simulations, the effect of different load levels and moisture contents for the fuel mixture has been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific combustion programs (Gaseq, Chemical equilibria in perfect gases, Chris Morley) are used to model dioxin and formation in the incineration processes of urban solid wastes. Thanks to these programs, it is possible to establish correlations with the formation mechanisms postulated in literature on the subject. It was found that minimum oxygen quantities are required to obtain a significant formation of these compounds and that more furans than dioxins are formed. Likewise, dioxin and furan formation is related to the presence of carbon monoxide, and dioxin and furan distribution among its different compounds depends on the chlorine and hydrogen relative composition. This is due to the fact that an increased chlorine availability leads to the formation of compounds bearing a higher chlorine concentration (penta-, hexa-, hepta-, and octachlorides), whereas an increased hydrogen availability leads to the formation of compounds bearing a lower chlorine number (mono, di-, tri-, and tetrachlorides).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium oxide looping is a carbon dioxide sequestration technique that utilizes the partially reversible reaction between limestone and carbon dioxide in two interconnected fluidised beds, carbonator and calciner. Flue gases from a combustor are fed into the carbonator where calcium oxide reacts with carbon dioxide within the gases at a temperature of 650 ºC. Calcium oxide is transformed into calcium carbonate which is circulated into the regenerative calciner, where calcium carbonate is returned into calcium oxide and a stream of pure carbon dioxide at a higher temperature of 950 ºC. Calcium oxide looping has proved to have a low impact on the overall process efficiency and would be easily retrofitted into existing power plants. This master’s thesis is done in participation to an EU funded project CaOling as a part of the Lappeenranta University of Technology deliverable, reactor modelling and scale-up tools. Thesis concentrates in creating the first model frame and finding the physically relevant phenomena governing the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perovskite-type oxides using transition metals present a promising potential as catalysts in total oxidation reaction. The present work investigates the effect of synthesis by oxidant co-precipitation on the catalytic activity of perovskite-type oxides LaBO3 (B= Co, Ni, Mn) in total oxidation of propane and CO. The perovskite-type oxides were characterized by means of X-ray diffraction, nitrogen adsorption (BET method), thermo gravimetric and differential thermal analysis (ATG-DTA) and X-ray photoelectron spectroscopy (XPS). Through a method involving the oxidant co-precipitation it's possible to obtain catalysts with different BET surface areas, of 33-44 m²/g, according the salts of metal used. The characterization results proved that catalysts have a perovskite phase as well as lanthanum oxide, except LaMnO3, that presents a cationic vacancies and generation for known oxygen excess. The results of catalytic test showed that all oxides have a specific catalytic activity for total oxidation of CO and propane even though the temperatures for total conversion change for each transition metal and substance to be oxidized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical looping combustion (CLC) provides a promising technology to help cut carbon dioxide emissions. CLC is based on separated oxidation and reduction processes. Oxygen carrier, which is made from metal and supporting material, is in continuous recirculation between the air and fuel reactors. The CLC process does not require separation unit for carbon dioxide. The fuel reactor can produce an almost pure carbon dioxide feed which decrease costs of carbon capture and storage (CCS). The CLC method is one of the most promising ones for energy efficient carbon capture. A large amount of literature was examined for this study and from it the most promising methods and designs were chosen. These methods and designs were combined as reactor system design which was then sized during the making of this thesis. Sizing was done with a mathematical model that was further improved during the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled three-dimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semi-empirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential sub-phenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work analyzed characteristics of charcoal used for barbecue and mainly took interest in the influence of the granulometry in the combustion process. The material have been tested for four different grain size (8, 16, 32 and 50 mm) following a combustion test called combustion index (ICOMcv), which takes in consideration time processing, temperature generated and the mass consumed. The characterization of charcoal was done according to the following parameters, moisture, apparent density, grain density, volatile materials content, ash content, fixed carbon content and calorific value. The proofed charcoal presented standard indicators for use in barbecue and was noticed the relationship between granulometric analysis and the ICOMcv. The 16 mm grain size charcoal sample showed the best results for combustion. By contrast, the largest grain size sample presented lower results compared to the other samples. Thus, establishing unprecedented quantitative indicators in relation to those observed in practice, regarding the influence of grain size on the efficiency of combustion of the charcoal when used for barbecue.