926 resultados para Combinatorial reasoning
Resumo:
This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage
Resumo:
Utilizing the well-known Ultimatum Game, this note presents the following phenomenon. If we start with simple stimulus-response agents, learning through naive reinforcement, and then grant them some introspective capabilities, we get outcomes that are not closer but farther away from the fully introspective game-theoretic approach. The cause of this is the following: there is an asymmetry in the information that agents can deduce from their experience, and this leads to a bias in their learning process.
Resumo:
Abstract OBJECTIVE This study aimed at analyzing the current state of knowledge on clinical reasoning in undergraduate nursing education. METHODS A systematic scoping review through a search strategy applied to the MEDLINE database, and an analysis of the material recovered by extracting data done by two independent reviewers. The extracted data were analyzed and synthesized in a narrative manner. RESULTS From the 1380 citations retrieved in the search, 23 were kept for review and their contents were summarized into five categories: 1) the experience of developing critical thinking/clinical reasoning/decision-making process; 2) teaching strategies related to the development of critical thinking/clinical reasoning/decision-making process; 3) measurement of variables related to the critical thinking/clinical reasoning/decision-making process; 4) relationship of variables involved in the critical thinking/clinical reasoning/decision-making process; and 5) theoretical development models of critical thinking/clinical reasoning/decision-making process for students. CONCLUSION The biggest challenge for developing knowledge on teaching clinical reasoning seems to be finding consistency between theoretical perspectives on the development of clinical reasoning and methodologies, methods, and procedures in research initiatives in this field.
Resumo:
Many experiments have shown that human subjects do not necessarily behave in line with game theoretic assumptions and solution concepts. The reasons for this non-conformity are multiple. In this paper we study the argument whether a deviation from game theory is because subjects are rational, but doubt that others are rational as well, compared to the argument that subjects, in general, are boundedly rational themselves. To distinguish these two hypotheses, we study behavior in repeated 2-person and many-person Beauty-Contest-Games which are strategically different from one another. We analyze four different treatments and observe that convergence toward equilibrium is driven by learning through the information about the other player s choice and adaptation rather than self-initiated rational reasoning.
Resumo:
This paper examines three specific issues raised by The Ethical Project. First, I discuss the varieties of altruism and spell out the differences between the definitions proposed by Kitcher and the ways altruism is usually conceived in biology, philosophy, psychology, and economics literature. Second, with the example of Kitcher's account, I take a critical look at evolutionary stories of the emergence of human ethical practices. Third, I point to the revolutionary implications of the Darwinian methodology when it is thoughtfully applied to ethics.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.
Resumo:
We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands for the stem-loop structure located at the exon 10-5'-intron junction of Tau pre-mRNA, which is involved in the onset of several tauopathies including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) have been identified by using DCC. These compounds effectively bind the stem-loop RNA target (the concentration required for 50% RNA response (EC(50)): 2-58 μM), as determined by fluorescence titration experiments. Importantly, most of them are able to stabilize both the wild-type and the +3 and +14 mutated sequences associated with the development of FTDP-17 without producing a significant change in the overall structure of the RNA (as analyzed by circular dichroism (CD) spectroscopy), which is a key factor for recognition by the splicing regulatory machinery. A good correlation has been found between the affinity of the ligands for the target and their ability to stabilize the RNA secondary structure.
Resumo:
A novel approach for the identification of tumor antigen-derived sequences recognized by CD8(+) cytolytic T lymphocytes (CTL) consists in using synthetic combinatorial peptide libraries. Here we have screened a library composed of 3.1 x 10(11) nonapeptides arranged in a positional scanning format, in a cytotoxicity assay, to search the antigen recognized by melanoma-reactive CTL of unknown specificity. The results of this analysis enabled the identification of several optimal peptide ligands, as most of the individual nonapeptides deduced from the primary screening were efficiently recognized by the CTL. The results of the library screening were also analyzed with a mathematical approach based on a model of independent and additive contribution of individual amino acids to antigen recognition. This biometrical data analysis enabled the retrieval, in public databases, of the native antigenic peptide SSX-2(41-49), whose sequence is highly homologous to the ones deduced from the library screening, among the ones with the highest stimulatory score. These results underline the high predictive value of positional scanning synthetic combinatorial peptide library analysis and encourage its use for the identification of CTL ligands.
Resumo:
We introduce a model of strategic thinking in games of initial response. Unlike standard level-k models, in this framework the player's `depth of reasoning' is endogenously determined, andit can be disentangled from his beliefs over his opponent's cognitive bound. In our approach,individuals act as if they follow a cost-benefit analysis. The depth of reasoning is a function ofthe player's cognitive abilities and his payoffs. The costs are exogenous and represent the gametheoretical sophistication of the player; the benefit instead is related to the game payoffs. Behavioris in turn determined by the individual's depth of reasoning and his beliefs about the reasoningprocess of the opponent. Thus, in our framework, payoffs not only affect individual choices inthe traditional sense, but they also shape the cognitive process itself. Our model delivers testableimplications on players' chosen actions as incentives and opponents change. We then test themodel's predictions with an experiment. We administer different treatments that vary beliefs overpayoffs and opponents, as well as beliefs over opponents' beliefs. The results of this experiment,which are not accounted for by current models of reasoning in games, strongly support our theory.Our approach therefore serves as a novel, unifying framework of strategic thinking that allows forpredictions across games.