990 resultados para Color vision. Reproduction. Socio-sexual communication. Callithrix jacchus
Resumo:
The use of animal models in biomedical research is ever increasing. Models that use primates might also have advantages in terms of low maintenance costs and availability of biological knowledge, thereby favoring their use in different experimental protocols. Many current stress studies use animal models at different developmental stages since biological response differs during ontogeny. The aims of this study were to perform a detailed characterization of the developmental stages of common marmosets (Callithrix jacchus), a very important animal model used in biomedical research. Ten subjects, 6 females and 4 males, were followed from birth to initial adult age (16 months). Behavioral and fecal collection for measurement of adrenal (cortisol) and sex (progesterone, estradiol and androgens) hormones took place twice a week during the first month of life and once a week for the remainder of the study. Behavior was observed for 30 minutes in the morning (0700-09:00h) and afternoon (12:00-14:00h). Behavioral profile showed changes during ontogeny, characterizing the 4 developmental stages and the respective phases proposed by Leão et al (2009).. Differentiation of developmental stages was considered using the onset, end, change and stabilization of the behavioral profile parental care (weaning and carrying), ingestion (solid food), affiliation (social grooming) and autogrooming, agonism (scent marking and piloerection) and play behavior and endocrine profile. Infant weaning and carrying terminated within the infantile stage and the peak of solid food ingestion was recorded in the infantile III phase. Receiving grooming was recorded earlier than grooming performed by the infant and autogrooming. The first episode of scent marking was recorded in the 4th week and it was the least variable behavior, in terms of its onset, which, in almost all animals, was between the 5th and 7th week of life. Solitary play and play with the twin started around the 7th week and play with other members of the group started 8 weeks later. Sex hormone secretion started to differ from basal levels between the 21st and 23rd week of life, in males and females, suggesting that puberty occurs simultaneously in both sexes. Basal cortisol, even at an early age, was higher in females than in males. However, cortisol was not correlated with the juvenile stage, as expected, since this stage corresponds to the transition between infancy and adult age and most behaviors are intensified by this time. The behavioral and endocrine profile of subadult animals did not differ from that of the adults. These results provide more detailed parameters for the developmental process of C. jacchus and open new perspectives for the use of experimental approaches focused on the intermediate ontogenetic phases of this species
Resumo:
Cortical interneurons are characterized by their distinct morphological, physiological and biochemical properties, acting as modulators of the excitatory activity by pyramidal neurons, for example. Various studies have revealed differences in both distribution and density of this cell group throughout distinct cortical areas in several species. A particular class of interneuron closely related to cortical modulation is revealed by the immunohistochemistry for calcium binding proteins calbindin (CB), calretinina (CR) and parvalbumin (PV). Despite the growing amount of studies focusing on calcium binding proteins, the prefrontal cortex of primates remains relatively little explored, particularly in what concerns a better understanding of the organization of the inhibitory circuitry across its subdivisions. In the present study we characterized the morphology and distribution of neurons rich in calcium-binding proteins in the medial, orbital and dorsolateral areas of the prefrontal cortex of the marmoset (Callithrix jacchus). Using both morphometric and stereological techniques, we found that CR-reactive neurons (mainly double bouquet and bipolar cells) have a more complex dendritic arborization than CB-reactive (bitufted and basket cells) and PV-reactive neurons (chandelier cells). The neuronal densities of CR- and CB-reactive cells are higher in the supragranular layers (II/III) whilst PV-reactive neurons, conversely, are more concentrated in the infragranular layers (V/VI). CR-reactive neurons were the predominant group in the three regions evaluated, being most prevalent in dorsomedial region. Our findings point out to fundamental differences in the inhibitory circuitry of the different areas of the prefrontal cortex in marmoset
Resumo:
The circadian system consists of multiple oscillators organized hierarchically, with the suprachiasmatic nucleus (SCN) as the master oscillator to mammalians. There are lots of evidences that each SCN cell is an oscillator and that entrainment depends upon coupling degree between them. Knowledge of the mechanism of coupling between the SCN cells is essential for understanding entrainment and expression of circadian rhythms, and thus promote the development of new treatments for circadian rhythmicity disorders, which may cause various diseases. Some authors suggest that the dissociation model of circadian rhythm activity of rats under T22, period near the limit of synchronization, is a good model to induce internal desynchronization, and in this way, enhance knowledge about the coupling mechanism. So, in order to evaluate the pattern of the motor activity circadian rhythm of marmosets, Callithrix jacchus, in light-dark cycles at the lower limit of entrainment, two experiments were conducted: 1) 6 adult females were submitted to the LD symmetric cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; 2) 4 male and 4 female adults were subjected to T21 for 24 days followed by 18 days of LL, and then back to T21 for 24 days followed by 14 days of LL. Vocalizations of all animals and motor activity of each one of them were continuously recorded throughout the experiments, but the vocalizations were recorded only in Experiment 1. Under the Ts shorter than 24 h, two simultaneous circadian components appeared in motor activity, one with the same period of LD cycle, named light-entrained component, and the other in free-running, named non-light-entrained component. Both components were displayed for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. For vocalizations both components were observed under the three Ts. Due to the different characteristics of these components we suggest that dissociation is result of partial synchronization to the LD cycle, wherein at least one group oscillator is synchronized to the LD by relative coordination and masking processes, while at least another group of oscillators is in free-running, but also under the influence of masking by the LD. As the T21 h was the only cycle able to promote the emergence of both circadian components in circadian rhythms of all Callithrix jacchus, this was then considered the lower entrainment limit of LD cycle promoter of dissociation in circadian rhythmicity of this species, and then suggested as a non-human primate model for forced desynchronization
Resumo:
The temporal allocation of the active phase in relation to light and dark cycle (LD) changes during puberty in humans, degus, rats and rhesus. In marmosets, the animal model used in several biomedical researches, there is evidence of a delay at the beginning of the active phase and an increase in total daily activity after onset of puberty. However, as this aspect was evaluated in animals maintained in natural environmental conditions, it was not possible to distinguish between the effects of puberty and of seasonality. Furthermore, as motor activity is the result of different behaviors in this species, it is also important to characterize the diurnal distribution of other behaviors in juvenile stage. With the aim of characterizing the circadian rhythm of motor activity and the diurnal profile of affiliative behavior in marmosets, the motor activity of 5 dyads juveniles between 4 and 12 months of age and their parents was recorded continuously for actímetro. The families were maintained under artificial LD 12:12 h, constant temperature and humidity. The duration of grooming behavior, proximity and social play among juveniles was recorded 2 times a week in sessions of 15 minutes each hour of the active phase. Afetr onset of puberty in juvenile, it was observed that there was no change in the parameters of circadian motor activity rhythm which were common to most animals. Despite the absence of pubertal modulation, it was observed that the circadian activity profiles have stronger synchrony between individuals of the same family than that of different families, which may indicate that the circadian activity rhythm was modulated by the dynamics of social interactions. In relation to age, the total daily activity and the ratio between evening and morning activity (EA/MA) were higher in juveniles than in adults, which may be associated with differences in the circadian timing system between age groups. Furthermore, the onset of the 10 consecutive hours of higher activity (M10) occurred earlier in adult males than in other members of the group, probably as a way to avoid competition for resources in one of the first activities of the day that is foraging. During the juvenile stage, there was an increase in total daily activity that may be associated with increased motor ability of juveniles. In addition to the circadian activity rhythm, the daytime profile of proximity and social play behaviors was similar between the 5th and 12th month of life of juveniles, in which the interval between 7- 10 h in the morning showed the highest values of proximity and lower values of play social. Moreover, the duration of the grooming showed a similar distribution to adults from the 8th month, wherein the higher values occurring at the interval between 11 14 h of day. Considering the results, the parameters of the circadian activity rhythm had a greater influence of social factors than puberty. In relation to age, there were no changes related to the allocation of the active phase in relation to the LD cycle, but total daily activity, the ratio AV/AM and the start of the M10 is possible to observe differences between juveniles and adults
Resumo:
The pregeniculate nucleus (PGN) of the primate s thalamus is an agglomerate neuronal having a cap shaped located dorsomedially to the main relay visual information to the cerebral cortex, the dorsal lateral geniculate nucleus (GLD). Several cytoarchitectonic, neurochemical and retinal projections studies have pointed PGN as a structure homologous to intergeniculate leaflet (IGL) of rodents. The IGL receives retinal terminals and appears to be involved in the integration of photic and non-photic information relaying them, through geniculo-hypothalamic tract (TGH), to the main circadian oscillator in mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus. Thus, the IGL participates in the control of the biological rhythm by modulating the activity of the SCN. Pharmacological and IGL injury studies conclude that it is critical in the processing of non-photic information which is transmitted to the SCN. Other studies have found that especially neurons immunoreactive to neuropeptide Y (NPY) respond to this type of stimulation, determined by its colocation with the FOS protein. Has not been determined if the PGN responds, expressing the FOS protein, to the non-photic stimulus nor the neurochemical nature of these cells. Thus, we apply a dark pulse in the specifics circadian phases and analyze the pattern of expression of FOS protein in PGN of the marmoset (Callithrix jacchus). We found that in all animals analyzed the FOS expression was higher in the experimental than in the control group. There was a higher expression of FOS when the dark pulse was applied during the subjective day between the groups. Still, a subregion of the PGN, known by immunoreactive to NPY, had a greater number of FOS-positive cells in relation to his other just close dorsal region. Our data corroborate the theory that the PGN and IGL are homologous structures that were anatomically modified during the evolutionary process, but kept its main neurochemical and functional characteristics. However, injury and hodological studies are still needed for a more accurate conclusion
Resumo:
The circadian timing system (CTS) is responsible for the generation and synchronization and the suprachiasmatic nucleus (SCN) of the hypothalamus has been described as the major circadian pacemaker in many mammalian species. The internal temporal organization managed by SCN is disturbed with aging bringing many pathological disorders that range from loss of complex cognitive performance to simple physiological functions. Therefore, our aim was perform a comparative study of the morphological aspects and neurochemical composition in the SCN of marmosets (Callithrix jacchus) adults and older using immunohistochemical techniques. We found morphometric and neurochemical changes in th SCN o folder animals in comparison to adults, among these a possible decreased in retinal projection to the SCN of older animals, found through a decline in CTB immunostaining, which can occur due atrophy and/or decreasing of fibers from the retinohypothalamic tract (RHT). The Klüver-Barrera histological technique strongly suggests a decrease in those fibers from RHT. Also, by means of a morphometric study, it is found a atrophy and numerical decline of neurons in SCN of aged animals, investigated by Nissl technique, and immunostaining with NeuN and calbindin. Relative optical density (ROD) analysis were used to evaluate the expression of some neurochemical components in SCN, such as GFAP expression, which was increased in older, result that indirectly reinforces that morphological changes occurs due the aging; the vasoactive intestinal polipeptide (VIP) showed no expression alteration in SCN of older animals; the serotonin (5-HT) was descreased in the dorsomedial portion of the SCN, and neurpeptide Y (NPY) apparently also decrease due to the increase of age. Many of these modifications were seen in other animals, such as rodents, human primates and non-human primates. These data about marmoset comes to add new information of the effect of aging on structures responsibles for the circadian rhytmicity, and that some behavioral changes controlled by th SCN, and founded in aged animals, may be caused by these morphological and neurochemical changes. Although some results have been quantitatively negative, qualitatively all analysis show significant change comparing adult and older animals, perhaps due to a low sampling number. In conclusion, the marmoset presents several morphological and neurochemical changes in the SCN of aged animals compared to adults, which may result in behavioral changes that favor pathology aging related
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The competition for resources is one of the costs of group living. The scramble competition is considered an indirect type of competition, mainly associated with factors like group size and distribution of resources. Contest competition occurs when individuals compete directly for resources. In species that exibit this type of competition the establishment of dominance hierarchy can occur, resulting in differences on feeding and reproductive benefits for each member of the group. In these cases, aggressive and submissive behaviors are expected as a way to signal social status. The aim of this study was to investigate the effects of social hierarchy over food ingestion in Callithrix jacchus. Data recording was from September/2006 to March/2007, eight days by month, at Floresta Nacional de Açu do Instituto Chico Mendes de Biodiversidade. The observation time started at 05:00 AM and finished after the last animal was on the sleeptree. Analyses of aggressive interactions, behavioral profile and diet, reveals a lot of advantages for dominat animals in the study group. Dominant individuals had higher intake of animal matter that subordinates. The last ones, consumed fruits, exsudate and, eventually, explored itens that were not common to the diet. We suggest that dominance hiearchy enable the reproductive female to assure priority on access to food resources, a important caracteristc to supply tha costs to maintain tha high reproductive taxa of the specie. We also suggest that reproductive male, due to the participation on food transfer, had the forage efficience reduced
Resumo:
Most of ontogenetic studies on circadian timing system have been developed on infants, adults and elderly. The puberty has not been a stage of life few studied, except for researches in human adolescents, that presents phase delay in sleep-wake cycle. However, few studies have focused on the basis of this circadian change due to methodological difficulties. Thus, an animal model to study the sleep-wake cycle at puberty is essential. In the common marmoset, a social primate, the circadian activity periodicity stabilizes around 4 months (juvenile stage) and the 8h period component has a seasonal variation. Puberty stage of this species begins near the 8th month of age in males and near the 7th month in females with 7 months of duration. With the aim to characterize the circadian motor activity rhythm during puberty in marmosets (Callithrix jacchus) the motor activity was continuous registered by actiwatches in 6 animals between 5-12 months. Since the social factor influence the behavior of this specie, behavioral observations were realized in 30 minutes windows twice/week to a general evaluation of the influence social interactions dynamic across experiment. Determination of puberty onset was done by fecal progesterone and estrogens in females, and androgens in males. From the analysis of the multiple regression test was selected a model that evaluate age and seasonal variables effect on the activity rhythm according to the higher explanation coefficient. The total activity was the only parameter influenced by age. Moreover, the activity onset was the parameter more explained by the model, and the sunrise was the factor that most influenced it. After the puberty onset, 2 dyads advanced the activity onset. The activity total decreased in 1 dyad and increased in 2 dyads. This increase may be related to the birth of infants in these families. The motor activity circadian component stabilized later in 1 dyad, coinciding with the puberty onset of these animals, while bimodality, caused by the 8 h component, was modulated by seasonality. The agonistic behavior was not evaluated due to reduced number of events. There were changes across ages in affiliative behavior of contact in 1 dyad, grooming done in 1 animal and grooming received in 2 animals. Although there is evidence of puberty effect on the activity motor rhythm, the photoperiodic fluctuations influenced the rhythm. Therefore is not possible to affirm if the puberty modulate the activity rhythm in marmosets
Resumo:
Immediate-early genes (IEGs) expression has been widely used as a valuable tool to investigate brain areas activated by specific stimuli. Studies of natural vocalizations, specially in songbirds, have largely benefited from this tool. Here we used IEGs expression to investigate brain areas activated by the hearing of conspecific common marmoset (Callithrix jacchus) vocalizations and/or utterance of antiphonal vocalizations. Nine adult male common marmosets were housed in sound-attenuating cages. Six animals were stimulated with playbacks of freely recorded natural long distance vocalizations (phee calls and twitters; 45 min. total duration). Three of them vocalized in response (O/V group) and three did not (O/n group). The control group (C) was composed by the remaining animals, which neither heard the playbacks nor spontaneously vocalized. After one hour of the stimulation onset (or no stimulation, in the case of the C group), animals were perfused with 0,9% phosphate-saline buffer and 4% paraformaldehyde. The tissue was coronally sectioned at 20 micro meter in a cryostat and submitted to immunohistochemistry for the IEGs egr-1 and c-fos. Marked immunoreactivity was observed in the auditory cortex of O/V and O/n subjects and in the anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex of O/V subjects. In this study, brain areas activated by vocalizations of common marmosets were investigated using IEGs expression for the first time. Our results with the egr-1 gene indicate that potential plastic phenomena occur in areas related to hearing and uttering conspecific vocalizations.
Resumo:
In rodents, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian system. The SCN is considerate the site of an endogenous biological clock because can to generate rhythm and to synchronize to the environmental cues (zeitgebers) and IGL has been related as one of the main areas that modulate the action of SCN. Both receive projections of ganglion cells of retina and this projection to SCN is called retinohypothalamic tract (RHT). Moreover, the IGL is connected with SCN through of geniculohypothalamic tract (GHT). In primates (include humans) was not still demonstrated the presence of a homologous structure to the IGL. It is believed that the pregeniculate nucleus (PGN) can be the answer, but nothing it was still proven. Trying to answer that question, the objective of our study is to do a comparative analysis among PGN and IGL through of techniques immunohystochemicals, neural tracers and FOS expression after dark pulses. For this, we used as experimental model a primate of the new world, the common marmoset (Callithrix jacchus). Ours results may contribute to the elucidation of this lacuna in the circadian system once that the IGL is responsible for the transmission of nonphotic information to SCN and participate in the integration between photic and nonphotic stimulus to adjust the function of the SCN. In this way to find a same structure in primates represent an important achieve in the understanding of the biological rhythms in those animals
Resumo:
The auditory system is composed by a set of relays from the outer ear to the cerebral cortex. In mammals, the central auditory system is composed by cochlear nuclei, superior olivary complex, inferior colliculus and medial geniculate body. In this study, the auditory rombencephalic centers, the cochlear nuclear complex and the superior olivary complex were evaluated from the cytoarchitecture and neurochemical aspects, thorough Nissl staining and immunohistochemical techniques to reveal specific neuron nuclear protein (NeuN), glutamate (Glu), glutamic acid decarboxilase (GAD), enkephalin (ENK), serotonin (5-HT), choline acetyltransferase (ChAT) and calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). The common marmoset (Callithrix jacchus), a little native primate of the Brazilian atlantic forest was used as an experimental animal. As results, it was noted that the cochlear nuclear complex is composed by anteroventral, posteroventral and dorsal nuclei, and the superior olivary complex is constituted by the lateral and medial superior olivary nuclei and the trapezoid body nucleus. Glu, GAD, ENK, ChAT, CB, CR, PV-immunoreactive cells, fibers and terminals besides besides only 5-HT terminals were found unhomogeneously in all nuclei, of both complex. The emerging data are discussed in a comparative and functional context, and represent an important contribution to knowledge of the central auditory pathways in the common marmoset, and then in primates
Resumo:
Caffeine is considered the most consumed psychostimulant in the world, presenting several central and peripheral effects. In the Central Nervous System the major effect occur by its antagonistic activity at the A1 and A2a subtypes of the adenosine receptors. These receptors are responsible for the slow-wave sleep induction, and their binding, caused by the consumption of foods and beverages that contain caffeine, cause behaviors like increase of alertness, mood and locomotion. The effects of caffeine on memory are still discussed because of the diversity of experimental protocols. Also, it does not have the same effects on all stages of the processing of memory - acquisition, consolidation and recall. Thus, using the marmoset (Callitrhix jacchus) as subject, we aim to evaluate the effects of caffeine on the memory of this primate through the conditioned place preference paradigm, where the animal selects a context by presence of food. This cognitive task consists of five phases. The first phase was two sessions of pre-exposure, in which they were evaluated for preference for any compartment of the apparatus. Then, we proceeded the training, conditioning the animals to the food-present context for 8 days. Then, there was administration of caffeine or placebo (10mg/kg) for 8 consecutive days, during the pre-sleep phase, where the 20 animals were distributed in two groups: placebo and repeated. The forth phase was one day of retraining, a re-exposure of the apparatus to the marmosets followed by the administration of caffeine (for the repeated group and a new group called abstinence) or placebo (for placebo and abstinence groups). Finally, was the test where we evaluated if the subjects learned where the food was present. Moreover, in this work we evaluate the existence of differences between females and males on the task, and the locomotor activity for the experimental groups. The results showed that in the pre-exposure phase the animals were habituated on the apparatus and did not present differences for any contexts. In training, they were able to learn the conditioning task, independent of gender. For the retraining, the two groups exhibited more interactions in rewarded context than that in non-rewarded context. Nevertheless, in the locomotor activity, the repeated group moved similarly in contact with the apparatus and outside of it. In the other hand, the animals of the placebo group moved more when in contact with the apparatus. In the test phase, the marmosets under influence of caffeine presented an increase in the locomotor activity when compared with the placebo group, corroborating works that show this increase in locomotion. In the learning evaluation, the continuous and abstinence groups had a bad performance in the task in relation to the placebo and acute groups. This suggests that the prolonged administration of caffeine disrupts the memories because it affected sleep, which is largely responsible offline processing of memories
Resumo:
The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.
Resumo:
The parabrachial complex (PB) is an area of the brainstem responsible for the processing and transmission of essential physiologic information for the survival of the organisms. This region is subdivided in approximately nine subregions, considering morphology, cytoarchitectural and functional characteristic. Its neurons have an extensive network of connections with other regions of the nervous system. The objective in this work was to map the retinal projection to the PB and make a citoarchitectonic and neurochemical characterization of this region in the common marmoset (Callithrix jacchus), a primate of the New World. The retinal projections were mapped by anterograde transport of the choleric toxin subunit b (CTb). The citoarchitecture was described through the Nissl method, and the neurochemical characterization was made through immunohistochemical technique to the some neurotransmitters and neuroactives substances present in this neural center. In marmoset PB, in the coronal sections labeled by Nissl method, we found a similar pattern to that evidenced in other animal species. The immunoreactivity against CTb was verified in the PBMv in fibers/terminal, characterizing such as retinal innervations in this area. The immunohistochemical technique reveled that the PB contain cells, fibers and/or terminals immunoreactives to the neuronal nuclear protein, Choline acetyl transferase, nitric oxide synthase, serotonin, enkephalin, substance P, Calcium-binding proteins (calbindin, calretinin e parvalbumin), and glial fibrillary acidic protein. The histochemical technique reveled cells and fibers NADPH-diaphorase reactive. Each one of those substances presented a characteristic pattern of demarcation in PB, and some serve as specific markers of subregions