859 resultados para Collision theory model
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Theory building is one of the most crucial challenges faced by basic, clinical and population research, which form the scientific foundations of health practices in contemporary societies. The objective of the study is to propose a Unified Theory of Health-Disease as a conceptual tool for modeling health-disease-care in the light of complexity approaches. With this aim, the epistemological basis of theoretical work in the health field and concepts related to complexity theory as concerned to health problems are discussed. Secondly, the concepts of model-object, multi-planes of occurrence, modes of health and disease-illness-sickness complex are introduced and integrated into a unified theoretical framework. Finally, in the light of recent epistemological developments, the concept of Health-Disease-Care Integrals is updated as a complex reference object fit for modeling health-related processes and phenomena.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Resumo:
Versão dos autores para esta publicação.
Resumo:
Hong Kong’s currency is pegged to the US dollar in a currency board arrangement. In autumn 2003, the Hong Kong dollar appreciated from close to 7.80 per US dollar to 7.70, as investors feared that the currency board would be abandoned. In the wake of this appreciation, the monetary authorities revamped the one-sided currency board mechanism into a symmetric two-sided system with a narrow exchange rate band. This paper reviews the characteristics of the new currency board arrangement and embeds a theoretical soft edge target zone model typifying many intermediate regimes, to explain the notable achievement of speculative peace and credibility since May 2005.
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
The detailed geological mapping and structural study of a complete transect across the northwestern Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean opening and the Himalayan Orogeny. The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a Lower Permian stratigraphic unconformity, a Lower Permian granitic intrusion and middle Permian basaltic extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The scarcity of synsedimentary faults and the gradual increase of the Permian syn-rift sediment thickness towards the NE suggest a flexural type margin. The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul. The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The Nyimaling-Tsarap Nappe developed by ductile shear of the upper part of the subducted Indian continental margin and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts of the Nyimaling-Tsarap and Shikar Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures, which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km. The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral transpression and underthrusting: the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models. Later, a phase of NE vergent `'backfolding'' developed on these two zones of dextral transpression, creating isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments. During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic unroofing of the amphibolite facies rocks of the Sarchu area: the Sarchu high angle Normal Fault, cutting a first set of low angle normal faults, which have been created by reactivation of older thrust planes related to the Nyimaling-Tsarap Nappe.
Resumo:
The O 1s x-ray photoelectron spectroscopy spectrum for Al(111)/O at 300 K shows two components whose behavior as a function of time and variation of detection angle are consistent with either (a) a surface species represented by the higher binding-energy (BE) component and a subsurface species represented by the lower BE component, or (b) small close-packed oxygen islands with the interior atoms represented by the lower BE component and the perimeter atoms by the higher BE component. We have modeled both situations using ab initio Hartree-Fock wave functions for clusters of Al and O atoms. For an O atom in a threefold site, it was found that a below-surface position gave a higher O 1s BE than an above-surface position, incompatible with interpretation (a). This change in the O 1s BE could arise because the bond for O to Al may have a more covalent character when the O is below the surface than when it is above the surface. We present evidence consistent with this view. An O adatom island with all the O atoms in threefold sites gives calculated O 1s BE's which are significantly higher for the perimeter O atoms. Further, the results for an isolated O island without the Al substrate present also give higher BE¿s for the perimeter atoms. Both these results are consistent with interpretation (b). Published scanning-tunneling-microscopy data supports the suggestion that the chemisorbed state consists of small, close-packed islands, whereas the presence of two vibrational modes in high-resolution electron-energy-loss spectroscopy data has been interpreted as representing surface and subsurface oxygen atoms. In light of the present results, we suggest that a vibrational interpretation in terms of interior and perimeter adatoms should be considered.
Resumo:
We present a new phenomenological approach to nucleation, based on the combination of the extended modified liquid drop model and dynamical nucleation theory. The new model proposes a new cluster definition, which properly includes the effect of fluctuations, and it is consistent both thermodynamically and kinetically. The model is able to predict successfully the free energy of formation of the critical nucleus, using only macroscopic thermodynamic properties. It also accounts for the spinodal and provides excellent agreement with the result of recent simulations.
Resumo:
Fifty-six percent of Canadians, 20 years of age and older, are inactive (Canadian Community Health Survey, 200012001). Research has indicated that one of the most dramatic declines in population physical activity occurs between adolescence and young adulthood (Melina, 2001; Stephens, Jacobs, & White, 1985), a time when individuals this age are entering or attending college or university. Colleges and universities have generally been seen as environments where physical activity and sport can be promoted and accommodated as a result of the available resources and facilities (Archer, Probert, & Gagne, 1987; Suminski, Petosa, Utter, & Zhang, 2002). Intramural sports, one of the most common campus recreational sports options available for post-secondary students, enable students to participate in activities that are suited for different levels of ability and interest (Lewis, Jones, Lamke, & Dunn, 1998). While intramural sports can positively affect the physical activity levels and sport participation rates of post-secondary students, their true value lies in their ability to encourage sport participation after school ends and during the post-school lives of graduates (Forrester, Ross, Geary, & Hall, 2007). This study used the Sport Commitment Model (Scanlan et aI., 1993a) and the Theory of Planned Behaviour (Ajzen, 1991) with post secondary intramural volleyball participants in an effort to examine students' commitment to intramural sport and 1 intentions to participate in intramural sports. More specifically, the research objectives of this study were to: (1.) test the Sport Commitment Model with a sample of postsecondary intramural sport participants(2.) determine the utility of the sixth construct, social support, in explaining the sport commitment of post-secondary intramural sport participants; (3.) determine if there are any significant differences in the six constructs of IV the SCM and sport commitment between: gender, level of competition (competitive A vs. B), and number of different intramural sports played; (4.) determine if there are any significant differences between sport commitment levels and constructs from the Theory of Planned Behaviour (attitudes, subjective norms, perceived behavioural control, and intentions); (5.) determine the relationship between sport commitment and intention to continue participation in intramural volleyball, continue participating in intramurals and continuing participating in sport and physical activity after graduation; and (6.) determine if the level of sport commitment changes the relationship between the constructs from the Theory of Planned Behaviour. Of the 318 surveys distributed, there were 302 partiCipants who completed a usable survey from the sample of post-secondary intramural sport participants. There was a fairly even split of males and females; the average age of the students was twenty-one; 90% were undergraduate students; for approximately 25% of the students, volleyball was the only intramural sport they participated in at Brock and most were part of the volleyball competitive B division. Based on the post-secondary students responses, there are indications of intent to continue participation in sport and physical activity. The participation of the students is predominantly influenced by subjective norms, high sport commitment, and high sport enjoyment. This implies students expect, intend and want to 1 participate in intramurals in the future, they are very dedicated to playing on an intramural team and would be willing to do a lot to keep playing and students want to participate when they perceive their pursuits as enjoyable and fun, and it makes them happy. These are key areas that should be targeted and pursued by sport practitioners.
Resumo:
Using the independent particle model as our basis we present a scheme to reduce the complexity and computational effort to calculate inclusive probabilities in many-electron collision system. As an example we present an application to K - K charge transfer in collisions of 2.6 MeV Ne{^9+} on Ne. We are able to give impact parameter-dependent probabilities for many-particle states which could lead to KLL-Auger electrons after collision and we compare with experimental values.