918 resultados para Collins moment
Resumo:
A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The model dependence inherent in hadronic calculations is one of the dominant sources of uncertainty in the theoretical prediction of the anomalous magnetic moment of the muon. In this thesis, we focus on the charged pion contribution and turn a critical eye on the models employed in the few previous calculations of $a_\mu^{\pi^+\pi^-}$. Chiral perturbation theory provides a check on these models at low energies, and we therefore calculate the charged pion contribution to light-by-light (LBL) scattering to $\mathcal{O}(p^6)$. We show that the dominant corrections to the leading order (LO) result come from two low energy constants which show up in the form factors for the $\gamma\pi\pi$ and $\gamma\gamma\pi\pi$ vertices. Comparison with the existing models reveal a potentially significant omission - none include the pion polarizability corrections associated with the $\gamma\gamma\pi\pi$ vertex. We next consider alternative models where the pion polarizability is produced through exchange of the $a_1$ axial vector meson. These have poor UV behavior, however, making them unsuited for the $a_\mu^{\pi^+\pi^-}$ calculation. We turn to a simpler form factor modeling approach, generating two distinct models which reproduce the pion polarizability corrections at low energies, have the correct QCD scaling at high energies, and generate finite contributions to $a_\mu^{\pi^+\pi^-}$. With these two models, we calculate the charged pion contribution to the anomalous magnetic moment of the muon, finding values larger than those previously reported: $a_\mu^\mathrm{I} = -1.779(4)\times10^{-10}\,,\,a_\mu^\mathrm{II} = -4.892(3)\times10^{-10}$.
Resumo:
The Northridge earthquake of January 17, 1994, highlighted the two previously known problems of premature fracturing of connections and the damaging capabilities of near-source ground motion pulses. Large ground motions had not been experienced in a city with tall steel moment-frame buildings before. Some steel buildings exhibited fracture of welded connections or other types of structural degradation.
A sophisticated three-dimensional nonlinear inelastic program is developed that can accurately model many nonlinear properties commonly ignored or approximated in other programs. The program can assess and predict severely inelastic response of steel buildings due to strong ground motions, including collapse.
Three-dimensional fiber and segment discretization of elements is presented in this work. This element and its two-dimensional counterpart are capable of modeling various geometric and material nonlinearities such as moment amplification, spread of plasticity and connection fracture. In addition to introducing a three-dimensional element discretization, this work presents three-dimensional constraints that limit the number of equations required to solve various three-dimensional problems consisting of intersecting planar frames.
Two buildings damaged in the Northridge earthquake are investigated to verify the ability of the program to match the level of response and the extent and location of damage measured. The program is used to predict response of larger near-source ground motions using the properties determined from the matched response.
A third building is studied to assess three-dimensional effects on a realistic irregular building in the inelastic range of response considering earthquake directivity. Damage levels are observed to be significantly affected by directivity and torsional response.
Several strong recorded ground motions clearly exceed code-based levels. Properly designed buildings can have drifts exceeding code specified levels due to these ground motions. The strongest ground motions caused collapse if fracture was included in the model. Near-source ground displacement pulses can cause columns to yield prior to weaker-designed beams. Damage in tall buildings correlates better with peak-to-peak displacements than with peak-to-peak accelerations.
Dynamic response of tall buildings shows that higher mode response can cause more damage than first mode response. Leaking of energy between modes in conjunction with damage can cause torsional behavior that is not anticipated.
Various response parameters are used for all three buildings to determine what correlations can be made for inelastic building response. Damage levels can be dramatically different based on the inelastic model used. Damage does not correlate well with several common response parameters.
Realistic modeling of material properties and structural behavior is of great value for understanding the performance of tall buildings due to earthquake excitations.
Resumo:
The generation of attosecond pulses in a two-level system with permanent dipole moment is investigated. It is shown due to the presence of permanent dipole moments, that the plateau of the high-order harmonic generation spectrum can be extended to X-ray range. Moreover, attosecond pulses with higher intensity can be synthesized by using both even and odd harmonics because of their quantum interference. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the 1994 Mw 6.7 Northridge and 1995 Mw 6.9 Kobe earthquakes, steel moment-frame buildings were exposed to an unexpected flaw. The commonly utilized welded unreinforced flange, bolted web connections were observed to experience brittle fractures in a number of buildings, even at low levels of seismic demand. A majority of these buildings have not been retrofitted and may be susceptible to structural collapse in a major earthquake.
This dissertation presents a case study of retrofitting a 20-story pre-Northridge steel moment-frame building. Twelve retrofit schemes are developed that present some range in degree of intervention. Three retrofitting techniques are considered: upgrading the brittle beam-to-column moment resisting connections, and implementing either conventional or buckling-restrained brace elements within the existing moment-frame bays. The retrofit schemes include some that are designed to the basic safety objective of ASCE-41 Seismic Rehabilitation of Existing Buildings.
Detailed finite element models of the base line building and the retrofit schemes are constructed. The models include considerations of brittle beam-to-column moment resisting connection fractures, column splice fractures, column baseplate fractures, accidental contributions from ``simple'' non-moment resisting beam-to-column connections to the lateral force-resisting system, and composite actions of beams with the overlying floor system. In addition, foundation interaction is included through nonlinear translational springs underneath basement columns.
To investigate the effectiveness of the retrofit schemes, the building models are analyzed under ground motions from three large magnitude simulated earthquakes that cause intense shaking in the greater Los Angeles metropolitan area, and under recorded ground motions from actual earthquakes. It is found that retrofit schemes that convert the existing moment-frames into braced-frames by implementing either conventional or buckling-restrained braces are effective in limiting structural damage and mitigating structural collapse. In the three simulated earthquakes, a 20% chance of simulated collapse is realized at PGV of around 0.6 m/s for the base line model, but at PGV of around 1.8 m/s for some of the retrofit schemes. However, conventional braces are observed to deteriorate rapidly. Hence, if a braced-frame that employs conventional braces survives a large earthquake, it is questionable how much service the braces provide in potential aftershocks.
Resumo:
The electrical and magnetic properties of amorphous alloys obtained by rapid quenching from the liquid state have been studied. The composition of these alloys corresponds to the general formula MxPd80-xSi20, in which M stands for a metal of the first transition series between chromium and nickel and x is its atomic concentration. The concentration ranges within which an amorphous structure could be obtained were: from 0 to 7 for Cr, Mn and Fe, from 0 to 11 for Co and from 0 to 15 for Ni. A well-defined minimum in the resistivity vs temperature curve was observed for all alloys except those containing nickel. The alloys for which a resistivity minimum was observed had a negative magnetoresistivity approximately proportional to the square of the magnetization and their susceptibility obeyed the Curie-Weiss law in a wide temperature range. For concentrated Fe and Co alloys the resistivity minimum was found to coexist with ferromagnetism. These observations lead to the conclusion that the present results are due to a s-d exchange interaction. The unusually high resistivity minimum temperature observed in the Cr alloys is interpreted as a result of a high Kondo temperature and a large s-d exchange integral. A low Fermi energy of the amorphous alloys (3.5 eV) is also responsible for the anomalies due to the s-d exchange interaction.
Resumo:
There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.
Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.
Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.
Resumo:
Part I:
The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.
Part II:
When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.