804 resultados para Collaborative environments
Resumo:
The aim of this dissertation is to investigate if participation in business simulation gaming sessions can make different leadership styles visible and provide students with experiences beneficial for the development of leadership skills. Particularly, the focus is to describe the development of leadership styles when leading virtual teams in computer-supported collaborative game settings and to identify the outcomes of using computer simulation games as leadership training tools. To answer to the objectives of the study, three empirical experiments were conducted to explore if participation in business simulation gaming sessions (Study I and II), which integrate face-to-face and virtual communication (Study III and IV), can make different leadership styles visible and provide students with experiences beneficial for the development of leadership skills. In the first experiment, a group of multicultural graduate business students (N=41) participated in gaming sessions with a computerized business simulation game (Study III). In the second experiment, a group of graduate students (N=9) participated in the training with a ‘real estate’ computer game (Study I and II). In the third experiment, a business simulation gaming session was organized for graduate students group (N=26) and the participants played the simulation game in virtual teams, which were organizationally and geographically dispersed but connected via technology (Study IV). Each team in all experiments had three to four students and students were between 22 and 25 years old. The business computer games used for the empirical experiments presented an enormous number of complex operations in which a team leader needed to make the final decisions involved in leading the team to win the game. These gaming environments were interactive;; participants interacted by solving the given tasks in the game. Thus, strategy and appropriate leadership were needed to be successful. The training was competition-based and required implementation of leadership skills. The data of these studies consist of observations, participants’ reflective essays written after the gaming sessions, pre- and post-tests questionnaires and participants’ answers to open- ended questions. Participants’ interactions and collaboration were observed when they played the computer games. The transcripts of notes from observations and students dialogs were coded in terms of transactional, transformational, heroic and post-heroic leadership styles. For the data analysis of the transcribed notes from observations, content analysis and discourse analysis was implemented. The Multifactor Leadership Questionnaire (MLQ) was also utilized in the study to measure transformational and transactional leadership styles;; in addition, quantitative (one-way repeated measures ANOVA) and qualitative data analyses have been performed. The results of this study indicate that in the business simulation gaming environment, certain leadership characteristics emerged spontaneously. Experiences about leadership varied between the teams and were dependent on the role individual students had in their team. These four studies showed that simulation gaming environment has the potential to be used in higher education to exercise the leadership styles relevant in real-world work contexts. Further, the study indicated that given debriefing sessions, the simulation game context has much potential to benefit learning. The participants who showed interest in leadership roles were given the opportunity of developing leadership skills in practice. The study also provides evidence of unpredictable situations that participants can experience and learn from during the gaming sessions. The study illustrates the complex nature of experiences from the gaming environments and the need for the team leader and role divisions during the gaming sessions. It could be concluded that the experience of simulation game training illustrated the complexity of real life situations and provided participants with the challenges of virtual leadership experiences and the difficulties of using leadership styles in practice. As a result, the study offers playing computer simulation games in small teams as one way to exercise leadership styles in practice.
Resumo:
Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.
Resumo:
Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.
Resumo:
For several years, online educational tools such as Blackboard have been used by Universities to foster collaborative learning in an online setting. Such tools tend to be implemented in a top-down fashion, with the institution providing the tool to the students and instructing them to use it. Recently, however, a more informal, bottom up approach is increasingly being employed by the students themselves in the form of social networks such as Facebook. With over 9,000 registered Facebook users at the beginning of this study, rising to over 12,000 at the University of Reading alone, Facebook is becoming the de facto social network of choice for higher education students in the UK, and there was increasing anecdotal evidence that students were actively learning via Facebook rather than through BlackBoard. To test the validity of these anecdotes, a questionnaire was sent to students, asking them about their learning experiences via BlackBoard and Facebook. The results show that students are making use of the tools available to them even when there is no formal academic content, and that increased use of a social networking tool is correlated with a reported increase in learning as a result of that use.
Resumo:
Virtual Reality (VR) is widely used in visualizing medical datasets. This interest has emerged due to the usefulness of its techniques and features. Such features include immersion, collaboration, and interactivity. In a medical visualization context, immersion is important, because it allows users to interact directly and closelywith detailed structures in medical datasets. Collaboration on the other hand is beneficial, because it gives medical practitioners the chance to share their expertise and offer feedback and advice in a more effective and intuitive approach. Interactivity is crucial in medical visualization and simulation systems, because responsiveand instantaneous actions are key attributes in applications, such as surgical simulations. In this paper we present a case study that investigates the use of VR in a collaborative networked CAVE environment from a medical volumetric visualization perspective. The study will present a networked CAVE application, which has been built to visualize and interact with volumetric datasets. We will summarize the advantages of such an application and the potential benefits of our system. We also will describe the aspects related to this application area and the relevant issues of such implementations.
Resumo:
This paper investigates the use of really simple syndication (RSS) to dynamically change virtual environments. The case study presented here uses meteorological data downloaded from the Internet in the form of an RSS feed, this data is used to simulate current weather patterns in a virtual environment. The downloaded data is aggregated and interpreted in conjunction with a configuration file, used to associate relevant weather information to the rendering engine. The engine is able to animate a wide range of basic weather patterns. Virtual reality is a way of immersing a user into a different environment, the amount of immersion the user experiences is important. Collaborative virtual reality will benefit from this work by gaining a simple way to incorporate up-to-date RSS feed data into any environment scenario. Instead of simulating weather conditions in training scenarios, actual weather conditions can be incorporated, improving the scenario and immersion.
Resumo:
This paper examines the influence of a collaborative rehabilitation environment that encourages a long-distance collaborative "play" using two robot-mediated environments. This study presents a strategy for increasing motivation on able-bodied persons, applicable to impaired persons, to engage, sustain play and relate during a shared task. The study consisted of a series of eighteen single case studies, each involved in two distinct phases and assessed using a multidimensional measurement intended to assess participant' subjective experience. The results showed a clear positive trend in favour of the robot-mediated game environment. Subjects found the collaborative environment more valuable and more interesting and enjoyable. As a consequence, it appears subjects were willing to spend more time at a task.
Resumo:
The paper presents how workflow-oriented, single-user Grid portals could be extended to meet the requirements of users with collaborative needs. Through collaborative Grid portals different research and engineering teams would be able to share knowledge and resources. At the same time the workflow concept assures that the shared knowledge and computational capacity is aggregated to achieve the high-level goals of the group. The paper discusses the different issues collaborative support requires from Grid portal environments during the different phases of the workflow-oriented development work. While in the design period the most important task of the portal is to provide consistent and fault tolerant data management, during the workflow execution it must act upon the security framework its back-end Grids are built on.
Resumo:
Large scientific applications are usually developed, tested and used by a group of geographically dispersed scientists. The problems associated with the remote development and data sharing could be tackled by using collaborative working environments. There are various tools and software to create collaborative working environments. Some software frameworks, currently available, use these tools and software to enable remote job submission and file transfer on top of existing grid infrastructures. However, for many large scientific applications, further efforts need to be put to prepare a framework which offers application-centric facilities. Unified Air Pollution Model (UNI-DEM), developed by Danish Environmental Research Institute, is an example of a large scientific application which is in a continuous development and experimenting process by different institutes in Europe. This paper intends to design a collaborative distributed computing environment for UNI-DEM in particular but the framework proposed may also fit to many large scientific applications as well.
Resumo:
In collaborative situations, eye gaze is a critical element of behavior which supports and fulfills many activities and roles. In current computer-supported collaboration systems, eye gaze is poorly supported. Even in a state-of-the-art video conferencing system such as the access grid, although one can see the face of the user, much of the communicative power of eye gaze is lost. This article gives an overview of some preliminary work that looks towards integrating eye gaze into an immersive collaborative virtual environment and assessing the impact that this would have on interaction between the users of such a system. Three experiments were conducted to assess the efficacy of eye gaze within immersive virtual environments. In each experiment, subjects observed on a large screen the eye-gaze behavior of an avatar. The eye-gaze behavior of that avatar had previously been recorded from a user with the use of a head-mounted eye tracker. The first experiment was conducted to assess the difference between users' abilities to judge what objects an avatar is looking at with only head gaze being viewed and also with eye- and head-gaze data being displayed. The results from the experiment show that eye gaze is of vital importance to the subjects, correctly identifying what a person is looking at in an immersive virtual environment. The second experiment examined whether a monocular or binocular eye-tracker would be required. This was examined by testing subjects' ability to identify where an avatar was looking from their eye direction alone, or by eye direction combined with convergence. This experiment showed that convergence had a significant impact on the subjects' ability to identify where the avatar was looking. The final experiment looked at the effects of stereo and mono-viewing of the scene, with the subjects being asked to identify where the avatar was looking. This experiment showed that there was no difference in the subjects' ability to detect where the avatar was gazing. This is followed by a description of how the eye-tracking system has been integrated into an immersive collaborative virtual environment and some preliminary results from the use of such a system.
Resumo:
For efficient collaboration between participants, eye gaze is seen as being critical for interaction. Video conferencing either does not attempt to support eye gaze (e.g. AcessGrid) or only approximates it in round table conditions (e.g. life size telepresence). Immersive collaborative virtual environments represent remote participants through avatars that follow their tracked movements. By additionally tracking people's eyes and representing their movement on their avatars, the line of gaze can be faithfully reproduced, as opposed to approximated. This paper presents the results of initial work that tested if the focus of gaze could be more accurately gauged if tracked eye movement was added to that of the head of an avatar observed in an immersive VE. An experiment was conducted to assess the difference between user's abilities to judge what objects an avatar is looking at with only head movements being displayed, while the eyes remained static, and with eye gaze and head movement information being displayed. The results from the experiment show that eye gaze is of vital importance to the subjects correctly identifying what a person is looking at in an immersive virtual environment. This is followed by a description of the work that is now being undertaken following the positive results from the experiment. We discuss the integration of an eye tracker more suitable for immersive mobile use and the software and techniques that were developed to integrate the user's real-world eye movements into calibrated eye gaze in an immersive virtual world. This is to be used in the creation of an immersive collaborative virtual environment supporting eye gaze and its ongoing experiments. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this article, we review the state-of-the-art techniques in mining data streams for mobile and ubiquitous environments. We start the review with a concise background of data stream processing, presenting the building blocks for mining data streams. In a wide range of applications, data streams are required to be processed on small ubiquitous devices like smartphones and sensor devices. Mobile and ubiquitous data mining target these applications with tailored techniques and approaches addressing scarcity of resources and mobility issues. Two categories can be identified for mobile and ubiquitous mining of streaming data: single-node and distributed. This survey will cover both categories. Mining mobile and ubiquitous data require algorithms with the ability to monitor and adapt the working conditions to the available computational resources. We identify the key characteristics of these algorithms and present illustrative applications. Distributed data stream mining in the mobile environment is then discussed, presenting the Pocket Data Mining framework. Mobility of users stimulates the adoption of context-awareness in this area of research. Context-awareness and collaboration are discussed in the Collaborative Data Stream Mining, where agents share knowledge to learn adaptive accurate models.
Resumo:
Background Successful implementation of new methods and models of healthcare to achieve better patient outcomes and safe, person-centered care is dependent on the physical environment of the healthcare architecture in which the healthcare is provided. Thus, decisions concerning healthcare architecture are critical because it affects people and work processes for many years and requires a long-term financial commitment from society. In this paper, we describe and suggest several strategies (critical factors) to promote shared-decision making when planning and designing new healthcare environments. Discussion This paper discusses challenges and hindrances observed in the literature and from the authors extensive experiences in the field of planning and designing healthcare environments. An overview is presented of the challenges and new approaches for a process that involves the mutual exchange of knowledge among various stakeholders. Additionally, design approaches that balance the influence of specific and local requirements with general knowledge and evidence that should be encouraged are discussed. Summary We suggest a shared-decision making and collaborative planning and design process between representatives from healthcare, construction sector and architecture based on evidence and end-users’ perspectives. If carefully and systematically applied, this approach will support and develop a framework for creating high quality healthcare environments.
Resumo:
The volume consists of twenty-five chapters selected from among peer-reviewed papers presented at the CELDA (Cognition and Exploratory Learning in the Digital Age) 2013 Conference held in Fort Worth, Texas, USA, in October 2013 and also from world class scholars in e-learning systems, environments and approaches. The following sub-topics are included: Exploratory Learning Technologies (Part I), e-Learning social web design (Part II), Learner communities through e-Learning implementations (Part III), Collaborative and student-centered e-Learning design (Part IV). E-Learning has been, since its initial stages, a synonym for flexibility. While this dynamic nature has mainly been associated with time and space it is safe to argue that currently it embraces other aspects such as the learners’ profile, the scope of subjects that can be taught electronically and the technology it employs. New technologies also widen the range of activities and skills developed in e-Learning. Electronic learning environments have evolved past the exclusive delivery of knowledge. Technology has endowed e-Learning with the possibility of remotely fomenting problem solving skills, critical thinking and team work, by investing in information exchange, collaboration, personalisation and community building.
Resumo:
Recent mathematics education reform efforts call for the instantiation of mathematics classroom environments where students have opportunities to reason and construct their understandings as part of a community of learners. Despite some successes, traditional models of instruction still dominate the educational landscape. This limited success can be attributed, in part, to an underdeveloped understanding of the roles teachers must enact to successfully organize and participate in collaborative classroom practices. Towards this end, an in-depth longitudinal case study of a collaborative high school mathematics classroom was undertaken guided by the following two questions: What roles do these collaborative practices require of teacher and students? How does the community’s capacity to engage in collaborative practices develop over time? The analyses produced two conceptual models: one of the teacher’s role, along with specific instructional strategies the teacher used to organize a collaborative learning environment, and the second of the process by which the class’s capacity to participate in collaborative inquiry practices developed over time.