996 resultados para Cold rolling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper purpose is to analyze one of the main problems faced by cold rolling industry of the current time, the mechanical vibration. Factors such as strips with high velocity in order to increase the productivity and thickness becoming thinner and thinner cause the vibrations to be present at all times during rolling. These market requirements also drive the industry for technology development and thus bring the challenges that the operation of a new modern equipment and more powerful. The initial purpose is to analyze the forces that cause vibration in a rolling mill type four high with two stands, where is desirable to identify the origins of these vibrational forces to make possible dismiss them or at least control its intensity, in order to prevent damage in the rolling mill and ensure product quality to the customer. For it, will be used instruments to record and store the vibrations that occur during the lamination process. With this data will be able to analyze the characteristics of the vibrations and act at your elimination. At the end of the work is expected to demonstrate how important the critical view of the engineer in the analysis of graphics combined with the calculations of the natural vibration frequency and engagement of key parts of the laminator. With these two tools at hand, will be possible to increase the productivity of the rolling mill and act preventively in maintenance, thereby reducing your downtime and increasing its performance and efficiency

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physical origins of the magnetic properties of nonoriented electrical steels; its relations to microstructural features like grain size, nonmetallic inclusions, dislocation density distribution, crystallographic texture, and residual stresses; and its processing by cold rolling and annealing are overviewed, using quantitative relations whenever available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El wolframio (W) y sus aleaciones se consideran los mejores candidatos para la construcción del divertor en la nueva generación de reactores de fusión nuclear. Este componente va a recibir las cargas térmicas más elevadas durante el funcionamiento del reactor ya que estará en contacto directo con el plasma. En los últimos años, después de un profundo análisis y siguiendo una estrategia de reducción de costes, la Organización de ITER tomó la decisión de construir el divertor integramente de wolframio desde el principio. Por ello, el wolframio no sólo actuará como material en contacto con el plasma (PFM), sino que también tendría aplicaciones estructurales. El wolframio, debido a sus excelentes propiedades termo-físicas, cumple todos los requerimientos para ser utilizado como PFM, sin embargo, su inherente fragilidad pone en peligro su uso estructural. Por tanto, uno de los principales objetivos de esta tesis es encontrar una aleación de wolframio con menor fragilidad. Durante éste trabajo, se realizó la caracterización microstructural y mecánica de diferentes materiales basados en wolframio. Sin embargo, ésta tarea es un reto debido a la pequeña cantidad de material suministrado, su reducido tamaño de grano y fragilidad. Por ello, para una correcta medida de todas las propiedades físicas y mecánicas se utilizaron diversas técnicas experimentales. Algunas de ellas se emplean habitualmente como la nanoindentación o los ensayos de flexión en tres puntos (TPB). Sin embargo, otras fueron especificamente desarrolladas e implementadas durante el desarrollo de esta tesis como es el caso de la medida real de la tenacidad de fractura en los materiales masivos, o de las medidas in situ de la tenacidad de fractura en las láminas delgadas de wolframio. Diversas composiciones de aleaciones de wolframio masivas (W-1% Y2O3, W-2% V-0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 y W-4% Ti-1% La2O3) se han estudiado y comparado con un wolframio puro producido en las mismas condiciones. Estas aleaciones, producidas por ruta pulvimetalúrgica de aleado mecánico (MA) y compactación isostática en caliente (HIP), fueron microstructural y mecánicamente caracterizadas desde 77 hasta 1473 K en aire y en alto vacío. Entre otras propiedades físicas y mecánicas se midieron la dureza, el módulo elástico, la resistencia a flexión y la tenacidad de fractura para todas las aleaciones. Finalmente se analizaron las superficies de fractura después de los ensayos de TPB para relacionar los micromecanismos de fallo con el comportamiento macroscópico a rotura. Los resultados obtenidos mostraron un comportamiento mecánico frágil en casi todo el intervalo de temperaturas y para casi todas las aleaciones sin mejoría de la temperatura de transición dúctil-frágil (DBTT). Con el fin de encontrar un material base wolframio con una DBTT más baja se realizó también un estudio, aún preliminar, de láminas delgadas de wolframio puro y wolframio dopado con 0.005wt.% potasio (K). Éstas láminas fueron fabricadas industrialmente mediante sinterizado y laminación en caliente y en frío y se sometieron posteriormente a un tratamiento térmico de recocido desde 1073 hasta 2673 K. Se ha analizado la evolución de su microestructura y las propiedades mecánicas al aumentar la temperatura de recocido. Los resultados mostraron la estabilización de los granos de wolframio con el incremento de la temperatura de recocido en las láminas delgadas de wolframio dopado con potasio. Sin embargo, es necesario realizar estudios adicionales para entender mejor la microstructura y algunas propiedades mecánicas de estos materiales, como la tenacidad de fractura. Tungsten (W) and tungsten-based alloys are considered to be the best candidate materials for fabricating the divertor in the next-generation nuclear fusion reactors. This component will experience the highest thermal loads during the operation of a reactor since it directly faces the plasma. In recent years, after thorough analysis that followed a strategy of cost reduction, the ITER Organization decided to built a full-tunsgten divertor before the first nuclear campaigns. Therefore, tungsten will be used not only as a plasma-facing material (PFM) but also in structural applications. Tungsten, due to its the excellent thermo-physical properties fulfils the requirements of a PFM, however, its use in structural applications is compromised due to its inherent brittleness. One of the objectives of this phD thesis is therefore, to find a material with improved brittleness behaviour. The microstructural and mechanical characterisation of different tunsgten-based materials was performed. However, this is a challenging task because of the reduced laboratory-scale size of the specimens provided, their _ne microstructure and their brittleness. Consequently, many techniques are required to ensure an accurate measurement of all the mechanical and physical properties. Some of the applied methods have been widely used such as nanoindentation or three-point bending (TPB) tests. However, other methods were specifically developed and implemented during this work such as the measurement of the real fracture toughness of bulk-tunsgten alloys or the in situ fracture toughness measurements of very thin tungsten foils. Bulk-tunsgten materials with different compositions (W-1% Y2O3, W-2% V- 0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 and W-4% Ti-1% La2O3) were studied and compared with pure tungsten processed under the same conditions. These alloys, produced by a powder metallurgical route of mechanical alloying (MA) and hot isostatic pressing (HIP), were microstructural and mechanically characterised from 77 to 1473 K in air and under high vacuum conditions. Hardness, elastic modulus, flexural strength and fracture toughness for all of the alloys were measured in addition to other physical and mechanical properties. Finally, the fracture surfaces after the TPB tests were analysed to correlate the micromechanisms of failure with the macroscopic behaviour. The results reveal brittle mechanical behaviour in almost the entire temperature range for the alloys and micromechanisms of failure with no improvement in the ductile-brittle transition temperature (DBTT). To continue the search of a tungsten material with lowered DBTT, a preliminary study of pure tunsgten and 0.005 wt.% potassium (K)-doped tungsten foils was also performed. These foils were industrially produced by sintering and hot and cold rolling. After that, they were annealed from 1073 to 2673 K to analyse the evolution of the microstructural and mechanical properties with increasing annealing temperature. The results revealed the stabilisation of the tungsten grains with increasing annealing temperature in the potassium-doped tungsten foil. However, additional studies need to be performed to gain a better understanding of the microstructure and mechanical properties of these materials such as fracture toughness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work analyzed the tribological behavior of coatings/surface modifications traditionally used in cold rolling mill rolls and new coatings/surface modificationswith potential to replace the carcinogenic hard chrome. The study started with identification of wear mechanisms occurring in real coldrollingmill rolls. Due the high cost and dimensions of the rolls, thereplication technique was used. Replicas were obtained from 4 different rolling millBrazilian companies before and after a normal rolling campaign. Initial sliding tests were conducted using spherical and cylindrical counter bodies in order to verifywhichtribological conditions allowed to reproduce the wear mechanisms found in the replicas. These tests indicated the use of reciprocating sliding tests with cylindrical counter bodies (line contact), normal load of 100 N, and test times of and 1 h and 5 h. Different surface modifications were carried out on samples produced from a fragment of a rolling mill roll. The specimens were heat treated and ground on both sides. After, some specimens were surface textured by electrical discharge texturing (EDT). For both groups (ground and EDT), subsequent treatments of chromium plating, electroless NiP coating and plasma nitriding were carried out. The results of the reciprocating tests showed that specimens with electroless NiP coating presented the lowest friction coefficients, while plasma nitrided specimens showed the highest. In general, previous surface texturing before the coating/surface modification increased the wear of the counter bodies. Oneexceptionwas for EDT with subsequent electroless NiP coating, which presented the lowest counter bodies wear rate. The samples withelectroless NiP coating promoted a tribolayer consisting of Nickel, Phosphorus and Oxygen on both the specimens andthecounter bodies, which was apparently responsible for the reduction of friction coefficient and wear rate. The increase of the test time reduced the wear rate of the samples, apparently due the stability of the tribolayers formed, except for the nitrided samples. For the textured specimens, NiP coating showed the best performance in maintaining the surface topography of the specimens after the sliding tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supersaturated Cu-3at.% Ag alloy was processed by cold rolling and short-time annealing in order to achieve a combination of high strength and good tensile ductility. After annealing of the rolled samples a heterogeneous solute atom distribution was developed due to the dissolution of nanosized Ag particles in some volumes of the matrix. In regions with higher solute content, the high dislocation density formed due to rolling was stabilized, while in other volumes the dislocation density decreased. The heterogeneous microstructure obtained after annealing exhibited a much higher ductility and only a slightly lower strength than in the as-rolled state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method is presented to determine residual stress distribution in sheet material from data collected in a free bending test. It may be used where the residual stress distribution is symmetrical about the mid-surface as it is usually the case for frequently-used sheet metal post-processing techniques such as skin-pass or temper rolling, tension- and roller leveling. An existing inverse technique is used to obtain a residual stress profile and material constants that provide the best fit in a finite element analysis of bending with the experimentally derived moment-curvature relation. The method is verified for bending of a low-carbon stainless steel using measurement of residual stress by X-ray diffraction. The residual stresses were induced in the sheet by cold rolling. The technique described here can be used industrially as a rapid method of investigating residual stresses in incoming sheet. In processes where the deformation is principally one of bending, such as cold roll forming, it is known that residual stresses have an influence on shape defects and springback and the method presented here can be used to determine whether incoming sheet is suitable for further processing and also as a means of obtaining improved material data input for numerical simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a high-manganese Fe-23Mn-1.5Al-0.3C Twinning-Induced Plasticity (TWIP) steel was subjected to plastic shear deformation using Equal-Channel Angular Pressing (ECAP) at 300 °C following route BC and additional annealing. The microstructure evolution during both deformation by ECAP and subsequent annealing was investigated and correlated with the mechanical properties. The successive grain refinement during ECAP was promoted by two parallel mechanisms, namely dislocation driven grain fragmentation and twin fragmentation, and accounted for the ultra-high strength. In addition, due to the relatively low volume fraction of deformation twins after ECAP at 300 °C, further contribution of deformation twinning during room temperature deformation allowed additional work-hardening capacity and elongation. During subsequent recovery annealing the ultra-fine grains and deformation twins were thermally stable, which supported retainment of the high yield strength along with regained uniform elongation. For the first time, the texture evolution during ECAP and during the following heat treatment was analyzed. After 1, 2, and 4 ECAP passes a transition texture with the characteristic texture components of both high- and low-SFE materials developed. During the following heat treatment the texture evolution proceeded similar to that observed in the same material after cold rolling. Retaining of the ECAP texture components due to oriented nucleation at grain boundaries and triple junctions as well as annealing twinning accounted for the formation of a weak, retained ECAP texture after recrystallization.

Relevância:

40.00% 40.00%

Publicador: