975 resultados para Cognitive Tasks
Resumo:
Alzheimer's dementia (AD) is a neurodegenerative disorder that causes motor and cognitive decline. The aim of this study was to analyze the influence of a specific physical activity program on the cognitive, depressive symptoms and functional capacity of patients with diagnosis of probable AD. The subject, a 79-year old woman, participated in this program for three months, with 50 min sessions three times a week. The instruments used were the Cambridge Cognitive Examination; the Geriatric Depression Scale; and the Battery of the American Alliance for Health Physical Education, Recreation and Dance. The results in relationship with the depressive symptoms and functional capacity were significantly positive. There were no changes in regards to the patient's cognitive functions. In conclusion, this physical activity program seems to be an important part of the treatment for patients with AD, as it improves the functional capacity and also stimulates cognitive tasks. © 2008 Asociación Española de Fisioterapeutas.
Resumo:
Demanding attention in order to keep postural balance increases with aging and with the presence of concurrent tasks that require information processing. Several studies have demonstrated that motor performance can be related to the complexity of the task and aging process, presenting a possible interaction between these factors. The aim of this review was to identify and analyze published papers about the effects of cognitive tasks on the postural control of elderly individuals. A systematic search in the Web of Science, SportDiscus, CINAHL, Science Direct on line, Biological Abstracts, PsycINFO, and Medline databases was made and 444 articles were found. Eight were selected that studied the variables of interest. These studies showed that postural control seems to be influenced by the individual's attention processes and that deficits in such ability may be associated to an increased risk of falls. © FTCD/CIDESD.
Estudo sobre o efeito do incremento de tarefas cognitivas sobre o padrão de marcha de adultas jovens
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Memória espacial e morfometria tridimensional da micróglia de CA1 e do giro denteado do Cebus apella
Resumo:
O presente trabalho tem o intuito de Investigar possíveis correlações entre a morfologia da micróglia do hipocampo e giro denteado e o desempenho cognitivo individual em teste de memória espacial no Cebus apella. Devido ao bom desempenho do Cebus apella em tarefas cognitivas hipocampo-dependentes, utilizou-se testes selecionados da Bateria Cambridge de Testes Neuropsicológicos (CANTAB) utilizada previamente com sucesso tanto em primatas do Velho Mundo quanto em humanos. Empregou-se o teste motor de adaptação a tela para checar a adaptação dos indivíduos à tela sensível ao toque e o teste de aprendizado pareado (TAP) para avaliar aprendizado e memória espacial. Para o estudo da correlação entre o desempenho individual no TAP da bateria CANTAB e a morfologia da micróglia, foi necessário reconstruir e analisar parâmetros morfométricos selecionados a partir de micróglias reconstruídas dos terços médio e externo da camada molecular do giro denteado e do lacunosum molecular de CA1, empregando microscopia tridimensional. A definição dos limites da formação hipocampal foi feita empregando-se critérios arquitetônicos previamente definidos. Para imunomarcação seletiva de micróglias foi utilizado o anticorpo policlonal (anti-Iba1) dirigido contra a proteína adaptadora ligante de cálcio ionizado Iba-1. A partir de procedimentos de estatística multivariada identificou-se a ocorrência de agrupamentos microgliais baseados em parâmetros morfométricos que permitiram a distinção de pelo menos dois grandes grupos microgliais em todos os indivíduos. Os resultados comportamentais expressos em taxa de aprendizado e alguns dos parâmetros morfométricos da micróglia dos terços externo e médio da camada molecular do giro denteado revelaram significativas correlações, lineares e não lineares. Em contraste, nenhuma correlação dessa natureza foi encontrada no lacunosum molecular de CA1. Nós sugerimos baseado no presente e em trabalhos anteriores que a correlação entre desempenho cognitivo e a complexidade estrutural da glia não é um atributo exclusivo dos astrócitos e que a morfologia da micróglia da camada molecular do giro denteado pode estar associada ainda que de forma indireta ao desempenho individual em testes de memória espacial.
Resumo:
Introduction: Biomechanical analysis of gait can be used effectively to identify changes in movement patterns and functional decline. Objective: To analyze the effect of dual task on gait spatio-temporal variables. Methods: The sample was made up of 32 subjects of both genders aged between 18 and 25 years. The test Timed Up and Go was performed under two conditions: original form and associated with a cognitive task (verbalize backwards the months of the year). We evaluated the total execution time, number of steps, cadence, time spent to lift, average speed and variability of the step time. Results: Significant changes were observed with the addition of the cognitive task in many gait spatio-temporal variables analyzed. Conclusion: The tests showed that the increase of cognitive tasks during walking may lead to changes in the performance of this task.
Resumo:
Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa.
Resumo:
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.
Resumo:
We combined repetitive transcranial magnetic stimulation (rTMS) and functional magnetic resonance imaging (fMRI) to investigate the functional relevance of parietal cortex activation during the performance of visuospatial tasks. fMRI provides information about local transient changes in neuronal activation during behavioural or cognitive tasks. Information on the functional relevance of this activation was obtained by using rTMS to induce temporary regional deactivations. We thereby turned the physiological parameter of brain activity into an independent variable controlled and manipulated by the experimenter and investigated its effect on the performance of the cognitive tasks within a controlled experimental design. We investigated cognitive tasks that were performed on the same visual material but differed in the demand on visuospatial functions. For the visuospatial tasks we found a selective enhancement of fMRI signal in the superior parietal lobule (SPL) and a selective impairment of performance after rTMS to this region in comparison to a control group. We could thus show that the parietal cortex is functionally important for the execution of spatial judgements on visually presented material and that TMS as an experimental tool has the potential to interfere with higher cognitive functions such as visuospatial information processing.
Resumo:
Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition.
Resumo:
Parkinson's disease, typically thought of as a movement disorder, is increasingly recognized as causing cognitive impairment and dementia. Eye movement abnormalities are also described, including impairment of rapid eye movements (saccades) and the fixations interspersed between them. Such movements are under the influence of cortical and subcortical networks commonly targeted by the neurodegeneration seen in Parkinson's disease and, as such, may provide a marker for cognitive decline. This study examined the error rates and visual exploration strategies of subjects with Parkinson's disease, with and without cognitive impairment, whilst performing a battery of visuo-cognitive tasks. Error rates were significantly higher in those Parkinson's disease groups with either mild cognitive impairment (P = 0.001) or dementia (P < 0.001), than in cognitively normal subjects with Parkinson's disease. When compared with cognitively normal subjects with Parkinson's disease, exploration strategy, as measured by a number of eye tracking variables, was least efficient in the dementia group but was also affected in those subjects with Parkinson's disease with mild cognitive impairment. When compared with control subjects and cognitively normal subjects with Parkinson's disease, saccade amplitudes were significantly reduced in the groups with mild cognitive impairment or dementia. Fixation duration was longer in all Parkinson's disease groups compared with healthy control subjects but was longest for cognitively impaired Parkinson's disease groups. The strongest predictor of average fixation duration was disease severity. Analysing only data from the most complex task, with the highest error rates, both cognitive impairment and disease severity contributed to a predictive model for fixation duration [F(2,76) = 12.52, P ≤ 0.001], but medication dose did not (r = 0.18, n = 78, P = 0.098, not significant). This study highlights the potential use of exploration strategy measures as a marker of cognitive decline in Parkinson's disease and reveals the efficiency by which fixations and saccades are deployed in the build-up to a cognitive response, rather than merely focusing on the outcome itself. The prolongation of fixation duration, present to a small but significant degree even in cognitively normal subjects with Parkinson's disease, suggests a disease-specific impact on the networks directing visual exploration, although the study also highlights the multi-factorial nature of changes in exploration and the significant impact of cognitive decline on efficiency of visual search.
Resumo:
Chemicals selectively stimulating the olfactory nerve typically cannot be localized in a lateralization task. Purpose of this study was to investigate whether the ability of subjects to localize an olfactory stimulus delivered passively to 1 of the 2 nostrils would improve under training. Fifty-two young, normosmic women divided in 2 groups participated. One group performed olfactory lateralization training, whereas the other group performed cognitive tasks. Results showed that only subjects performing lateralization training significantly improved in their ability to lateralize olfactory stimuli compared with subjects who did not undergo such training.
Resumo:
The purpose of the present study was to investigate whether amnesic patients show a bivalency effect. The bivalency effect refers to the performance slowing that occurs when switching tasks and bivalent stimuli appear occasionally among univalent stimuli. According to the episodic context binding account, bivalent stimuli create a conflict-loaded context that is re-activated on subsequent trials and thus it is assumed that it depends on memory binding processes. Given the profound memory deficit in amnesia, we hypothesized that the bivalency effect would be largely reduced in amnesic patients. We tested sixteen severely amnesic patients and a control group with a paradigm requiring predictable alternations between three simple cognitive tasks, with bivalent stimuli occasionally occurring on one of these tasks. The results showed the typical bivalency effect for the control group, that is, a generalized slowing for each task. In contrast, for amnesic patients, only a short-lived slowing was present on the task that followed immediately after a bivalent stimulus, indicating that the binding between tasks and context was impaired in amnesic patients.
Resumo:
Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.
Resumo:
There is growing evidence that physical education has not only positive effects on the physical health of children and adolescents, but also contributes positively to personality development and to performance in cognitive tasks. Existing studies indicate chronic as well as acute effects of physical education on cognitive performance. However, underlying mechanisms, required content of the physical intervention and duration of the effects are still unclear. In order to shed light on some of these open questions, the present study investigated the acute effects of a special form of physical education, integrating cardiac-stimulating tasks with executive demands, on the concentration of 11-year olds. Concentration was assessed three times using the d2-R Test. Intervention (n=38) and control group (n=35) did not differ in their d2-R performance in pre- nor in post-test, which took place after either a physical intervention or a normal core subject lesson respectively. In the follow-up test however, which was completed after two more core subject lessons for both groups, the intervention group improved more in their d2-R performance than the control group F(1, 71)=4.95, p=.03, indicating that physical education can positively influence children’s concentration, not immediately after the activity, but later on during the following school lessons.
Resumo:
Systematic differences in circadian rhythmicity are thought to be a substantial factor determining inter-individual differences in fatigue and cognitive performance. The synchronicity effect (when time of testing coincides with the respective circadian peak period) seems to play an important role. Eye movements have been shown to be a reliable indicator of fatigue due to sleep deprivation or time spent on cognitive tasks. However, eye movements have not been used so far to investigate the circadian synchronicity effect and the resulting differences in fatigue. The aim of the present study was to assess how different oculomotor parameters in a free visual exploration task are influenced by: a) fatigue due to chronotypical factors (being a 'morning type' or an 'evening type'); b) fatigue due to the time spent on task. Eighteen healthy participants performed a free visual exploration task of naturalistic pictures while their eye movements were recorded. The task was performed twice, once at their optimal and once at their non-optimal time of the day. Moreover, participants rated their subjective fatigue. The non-optimal time of the day triggered a significant and stable increase in the mean visual fixation duration during the free visual exploration task for both chronotypes. The increase in the mean visual fixation duration correlated with the difference in subjectively perceived fatigue at optimal and non-optimal times of the day. Conversely, the mean saccadic speed significantly and progressively decreased throughout the duration of the task, but was not influenced by the optimal or non-optimal time of the day for both chronotypes. The results suggest that different oculomotor parameters are discriminative for fatigue due to different sources. A decrease in saccadic speed seems to reflect fatigue due to time spent on task, whereas an increase in mean fixation duration a lack of synchronicity between chronotype and time of the day.