933 resultados para Coffee - Drying process


Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to the Convention on International Trade in Endangered Species, 36 wild feline species are threatened by extinction or severely endangered, and to save them is the target of several conservation programs. This study aimed to assess the viability of the freeze-drying technique for domestic cat sperm cells, with the ultimate goal of transferring this technology to the wild feline species. The domestic cat is an excellent experimental model for wild felids. It is in this scenario that the freeze-drying process (low-temperature vacuum dehydration) of sperm cells shows its value in preserving male cats' germplasm. Results from membrane and DNA integrity analysis are promising and validates the use of frozen-dried sperm samples in intracytoplasmic sperm injections (ICSIs). Further studies are still necessary to evaluate the ICSI embryo production using domestic cat frozen-dried sperm and the possibility of using such technology with wild felines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of ultrasound and osmotic dehydration pretreatments on papaya drying kinetics was investigated. The ultrasound pretreatment was carried out in an ultrasonic bath at 30 A degrees C. The osmotic pretreatment in sucrose solution was carried out in an incubator at 34 A degrees C and agitation of 80 rpm for 210 min. The drying process was conducted in a fixed bed dryer at 70 A degrees C. Experimental data were fitted successfully using the Page model for dried fresh and pretreated fruits, with coefficient of determination greater than 0.9992 and average relative error lower that 14.4 %. The diffusional model was used to describe the moisture transfer, and the effective water diffusivity was identified in the order of 10(-9) m(2) s(-1). It was found that drying rates of osmosed fruits were the lowest due to the presence of infused solutes, while the ultrasound pretreatment contributed to faster drying rates. Evaluation of the dried fruit was performed by means of total carotenoids retention. Ultrasound treatments in distilled water prior to air-drying gave rise to dried papayas with retention of carotenoids in the range 30.4-39.8 % and the ultrasonic-assisted osmotic dehydration of papayas showed carotenoids retention values up to 64.9 %, whereas the dried fruit without pretreatment showed carotenoids retention lower than 24 %.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An interdisciplinary study was conducted to evaluate the effects of drying and storage time on changes in the quality of natural and fully washed coffees beans dried out in the yard and mechanically dried at a temperature of 60/40°C in air dryer machine. The coffee beans (Coffea arabica L.) harvested in cherries were processed by dry and wet methods, being subjected to pre-drying yard, followed by drying yard in the sun with air heated of 60/40°C until it reached the water content of 11% (wb). After reached the thermal equilibrium with the environment, the beans were packed in jute bag with a capacity of five kilograms and stored in uncontrolled environment during the period of one year, and removing material from each treatment every three months. To characterize the effect of drying and storage time on the coffee quality different methodologies was evaluated. It was observed less drying time for the fully washed coffee 60/40°C, and thus less energy consumed in the drying process until the point of storage, for the natural coffee there was significant effect of time on the chemical quality, biochemical and sensory; fully washed coffee proved to be more tolerant to drying than natural coffee, regardless of drying method, showing a better drink quality and less variation in chemical composition and biochemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sludge generated by sewage treatment which meets regulatory standards can be used in agriculture. With this understanding, the focus of this study is the evaluation of the agricultural characteristics and inorganic substances in excess activated sludge, which was subjected to drying in a greenhouse. The variables (factor) evaluated during the drying process were: type of sludge (digested or not digested), addition of lime to the sludge, and the physical layout and rotation of sludge in the greenhouse. The parameters monitored for this assessment were moisture, volatile solids and pH. The greenhouse cover and sides were made of translucent plastic to allow the penetration of solar radiation and prevent water from entering. A impermeable floor was used. The sludge was generated in sewage treatment plants located in the metropolitan region of Grande Vitoria, Espirito Santo, Brazil. The solar drying of wastewater sludge in a greenhouse presented satisfactory results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fermentation stage is considered to be one of the critical steps in coffee processing due to its impact on the final quality of the product. The objective of this work is to characterise the temperature gradients in a fermentation tank by multi-distributed, low-cost and autonomous wireless sensors (23 semi-passive TurboTag® radio-frequency identifier (RFID) temperature loggers). Spatial interpolation in polar coordinates and an innovative methodology based on phase space diagrams are used. A real coffee fermentation process was supervised in the Cauca region (Colombia) with sensors submerged directly in the fermenting mass, leading to a 4.6 °C temperature range within the fermentation process. Spatial interpolation shows a maximum instant radial temperature gradient of 0.1 °C/cm from the centre to the perimeter of the tank and a vertical temperature gradient of 0.25 °C/cm for sensors with equal polar coordinates. The combination of spatial interpolation and phase space graphs consistently enables the identification of five local behaviours during fermentation (hot and cold spots).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The peppers can be very diverse, from sweet to hot peppers, varying in shape, in colour, in properties and usages. While some are eaten in the fresh state, many of them undergo a drying process to be preserved for a longer time and to increase availability and convenience. Hence, after harvesting, in many cases a drying operation is involved, and the present chapter aims to address this operation, of pivotal importance. In ancient times, the drying of foods in general and peppers in particular was done by exposure to the solar radiation. However, despite its cheapness and easiness, this process involved many drawbacks, like long drying times, probability of adverse atmospheric conditions and contaminations of the product. Hence, nowadays its usage is reduced. The most popular industrial drying method is the hot air convective drying. However, the high temperatures to which the product is exposed can cause changes in the composition and nutritional value as well as in the physical properties or organoleptic quality of the products. Other alternative methods can be used, but sometimes they are more expensive or more time consuming, such as is the case of freeze drying. Still, this last also has visible advantages from the quality point of view, minimizing the changes in texture, colour, flavour or nutrients. The knowledge of adequate drying operating conditions allows the optimization of the product characteristics, and hence to know the drying kinetics or the isotherms is fundamental to properly design the most adequate drying processes, and therefore preserve the organoleptic characteristics as well as the bioactive compounds present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse). The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in a practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. Nu = 2.0 + 0.27 (l/B)°-18Re°-5Pr°-83 Sh = 2.0 + 0.575 ((T0-T.)/Tomfc) -o.o4Reo.5 ^0.33 Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, gelatin, skim milk and fructose at air temperatures ranging from 19°C to 198°C. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures > 150°C. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature > 60° C a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet surface at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of paniculate drying processes, particularly when skin-formation occurs and may be a crucial factor in volatiles retention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments on drying of moist particles by ambient air were carried out to measure the mass transfer coefficient in a bubbling fluidized bed. Fine glass beads of mean diameter 125?µm were used as the bed material. Throughout the drying process, the dynamic material distribution was recorded by electrical capacitance tomography (ECT) and the exit air condition was recorded by a temperature/humidity probe. The ECT data were used to obtain qualitative and quantitative information on the bubble characteristics. The exit air moisture content was used to determine the water content in the bed. The measured overall mass transfer coefficient was in the range of 0.0145–0.021?m/s. A simple model based on the available correlations for bubble-cloud and cloud-dense interchange (two-region model) was used to predict the overall mass transfer coefficient. Comparison between the measured and predicted mass transfer coefficient have shown reasonable agreement. The results were also used to determine the relative importance of the two transfer regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissolving polymeric microneedle arrays and hydrogel-forming microneedle arrays have attracted much attention during recent years due mainly to their biocompatibility and capacity for enhanced drug delivery. Nevertheless, for the production of this type of devices, typically, a drying step is required. Microneedles are prepared following a micromoulding technique using aqueous blends of Gantrez® S-97. Currently, production of microneedles arrays involves a long drying process of 48 hours. Therefore alternative drying methods were investigated including microwave radiation and hot air convection.