981 resultados para Coding theory
Resumo:
Constellation Constrained (CC) capacity regions of a two-user Gaussian Multiple Access Channel(GMAC) have been recently reported. For such a channel, code pairs based on trellis coded modulation are proposed in this paper with MPSK and M-PAM alphabet pairs, for arbitrary values of M,toachieve sum rates close to the CC sum capacity of the GMAC. In particular, the structure of the sum alphabets of M-PSK and M-PAMmalphabet pairs are exploited to prove that, for certain angles of rotation between the alphabets, Ungerboeck labelling on the trellis of each user maximizes the guaranteed squared Euclidean distance of the sum trellis. Hence, such a labelling scheme can be used systematically,to construct trellis code pairs to achieve sum rates close to the CC sum capacity. More importantly, it is shown for the first time that ML decoding complexity at the destination is significantly reduced when M-PAM alphabet pairs are employed with almost no loss in the sum capacity.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.
Resumo:
We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.
Resumo:
The algebraic formulation for linear network coding in acyclic networks with each link having an integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes at any given time instant is a Fq-linear combination of the input symbols across different generations, where Fq denotes the field over which the network operates. We use finite-field discrete Fourier transform (DFT) to convert the output symbols at the sink nodes at any given time instant into a Fq-linear combination of the input symbols generated during the same generation. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (non-transform) approach if and only if there exists a network code satisfying sink demands in the transform approach. Furthermore, assuming time invariant local encoding kernels, we show that the transform method can be employed to achieve half the rate corresponding to the individual source-destination mincut (which are assumed to be equal to 1) for some classes of three-source three-destination multiple unicast network with delays using alignment strategies when the zero-interference condition is not satisfied.
Resumo:
In this paper, a new method is proposed to obtain full-diversity, rate-2 (rate of two complex symbols per channel use) space-time block codes (STBCs) that are full-rate for multiple input double output (MIDO) systems. Using this method, rate-2 STBCs for 4 x 2, 6 x 2, 8 x 2, and 12 x 2 systems are constructed and these STBCs are fast ML-decodable, have large coding gains, and STBC-schemes consisting of these STBCs have a non-vanishing determinant (NVD) so that they are DMT-optimal for their respective MIDO systems. It is also shown that the Srinath-Rajan code for the 4 x 2 system, which has the lowest ML-decoding complexity among known rate-2 STBCs for the 4x2 MIDO system with a large coding gain for 4-/16-QAM, has the same algebraic structure as the STBC constructed in this paper for the 4 x 2 system. This also settles in positive a previous conjecture that the STBC-scheme that is based on the Srinath-Rajan code has the NVD property and hence is DMT-optimal for the 4 x 2 system.
Resumo:
Discrete polymatroids are the multi-set analogue of matroids. In this paper, we explore the connections between linear index coding and representable discrete polymatroids. The index coding problem involves a sender which generates a set of messages X = {x(1), x(2), ... x(k)} and a set of receivers R which demand messages. A receiver R is an element of R is specified by the tuple (x, H) where x. X is the message demanded by R and H subset of X \textbackslash {x} is the side information possessed by R. It is first shown that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that matroid. Multi-linear representation of a matroid can be viewed as a special case of representation of an appropriate discrete polymatroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.
Resumo:
Storage systems are widely used and have played a crucial rule in both consumer and industrial products, for example, personal computers, data centers, and embedded systems. However, such system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new systems and devices, such as distributed storage and flash memory, respectively. Information theory, on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes to solve challenges in data storage using a variety of coding techniques, so that storage becomes faster, more affordable, and more reliable.
We consider the system level and study the integration of RAID schemes and distributed storage. Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where disks correspond to symbols in the code and are located in a (distributed) network. Specifically, RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear that when two symbols are erased, one needs to access and transmit all the remaining information to rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction of information that one needs to access and transmit in order to correct a single erasure? In Part I we will show that the lower bound of 1/2 is achievable and that the result can be generalized to codes with arbitrary number of parities and optimal rebuilding.
We consider the device level and study coding and modulation techniques for emerging non-volatile memories such as flash memory. In particular, rank modulation is a novel data representation scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. In order to decrease the decoding complexity, we propose two variations of this scheme in Part II: bounded rank modulation where only small sliding windows of cells are sorted to generated permutations, and partial rank modulation where only part of the n cells are used to represent data. We study limits on the capacity of bounded rank modulation and propose encoding and decoding algorithms. We show that overlaps between windows will increase capacity. We present Gray codes spanning all possible partial-rank states and using only ``push-to-the-top'' operations. These Gray codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence of integers generating all possible partial permutations.