125 resultados para Coculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. Methods. Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. Results. The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1 beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. Conclusion. This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effect of storage time on culture viability and some rheological properties (yield stress, storage modulus, loss modulus, linear viscoelastic region, structural recuperation and firmness) of fermented milk made with Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus (LA) and Bifidobacterium animalis ssp. lactis in coculture with Streptococcus thermophilus (ST). Acidification profiles and factors that affect viability (postfermentation acidification, acidity and dissolved oxygen) were also studied during 35 days at 4C. Fermented milk prepared with a coculture of ST and Bifidobacterium lactis gave the most constant rheological behavior and the best cell viability during cold storage; it was superior to ST plus LA for probiotic fermented milk production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cromoblastomicose e uma infeccao subcutanea cronica, granulomatosa, causada pela implantacao traumatica de diversas especies de fungos demaceos, sendo Fonsecaea pedrosoi o principal agente etiologico. O Brasil possui a segunda maior prevalencia mundial da doenca, sendo o estado do Para a maior area endemica. Histologicamente, a cromomicose e caracterizada pela presenca de celulas gigantes, onde podem ser observadas celulas escleroticas fagocitadas por macrofagos. O objetivo do presente estudo foi analisar os diferentes aspectos da interacao de macrofagos peritoneais de camundongos BALB/c e C57/BL6 com conidios ou celulas escleroticas de F. pedrosoi, determinando os indices de infeccao, fagocitose e fusao celular. Os resultados mostraram indices de fagocitose e infeccao maiores em conidios do que em celulas escleroticas para BALB/c (p<0.05), ocorrendo efeito inverso no indice de fusao, com a formacao de celulas gigantes do tipo Langhans na interacao com celulas escleroticas e celulas gigantes do tipo corpo estranho na interacao com conidios. Os macrofagos de BALB/c em interacao com conidios produziram mais TNF-α que o controle nos tempos de 3 a 72h; e mais IL-10 apos 3h. Macrofagos interagindo com celulas escleroticas produziram mais TNF-α que o controle nos tempos de 1h e 3h; e a quantidade de IL- 10 foi maior apos 72h de interacao. No co-cultivo de macrofagos de C57/BL6 com conidios observou-se a presenca de vacuolos aumentados apos 24h, enquanto na interacao com celulas escleroticas, os macrofagos se desprenderam da laminula nos tempos posteriores a 24 h. A quantidade de TNF-α e maior na interacao de conidios comparado ao controle em 1 e 72 h; e a quantidade de IL-10, no tempo de 48h. Ja na interacao com celulas escleroticas, apenas a quantidade de IL-10 diferiu do controle, sendo maior nos tempos de 1 a 48h. Estes dados sugerem que a resposta e macrofagos ao fungo e diferente entre os camundongos de BALB/c e C57/BL6, diferindo tambem a resposta de um mesmo tipo de macrofago para cada forma fungica, sendo as celulas escleroticas aparentemente mais imunogenicas que os conidios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lobomicose é uma infecção subcutânea crônica, granulomatosa, causada pela implantação traumática do fungo Lacazia loboi nos tecidos cutâneo e subcutâneo. Ocorre predominantemente na região Amazônica e atinge qualquer grupo populacional. Histologicamente, observa-se reação inflamatória crônica caracterizada por intensa histiocitose e fibroplasia, abundante número de macrófagos, células gigantes multinucleadas do tipo corpo estranho e presença de considerável número de células leveduriformes. Os macrófagos são células fagocíticas que participam do reconhecimento e da resposta a patógenos através da fagocitose, da apresentação de antígenos aos linfócitos T e da produção de citocinas. As células de Langerhans (LC) são um grupo de Células dendríticas (CD) derivadas da medula óssea situadas principalmente em uma camada suprabasal da epiderme. Estudos envolvendo a interação fungo-hospedeiro na doença de Jorge Lobo são escassos. Assim, Este estudo é um passo importante para o melhor entendimento da biologia e patogenia do L. loboi, e para o estudo da imunopatologia da interação patógeno versus hospedeiro desta doença emergente e pouco conhecida. O objetivo do presente trabalho foi analisar a interação in vitro entre macrófagos peritoneais não ativados e/ou LC, isolados de camundongos BALB/c, com L. loboi recém-isolado de pacientes com doença de Jorge Lobo, bem como determinar os índices de infecção, fagocitose e fusão, e medir a produção das citocinas TNF-α, IL-4, IL-6, IL-10 e IL-12. Os resultados demonstraram que L. loboi é fagocitado por macrófagos, mas não por LC. O índice de infecção na interação entre macrófagos e L. loboi foi semelhante à interação entre macrófagos, LC e L. loboi em todos os tempos analisados. A média do número de fungos por macrófago também foi praticamente igual entre as interações e ao longo do tempo, variando de 1,2 a 1,6 fungos/macrófagos. Não houve a formação de células gigantes em macrófagos cultivados ou LC cultivadas isoladamente e em nenhum dos co-cultivos. Não houve diferença significante na produção de IL-4, IL-2 e IL-10 nas interações estudadas. Os níveis de TNF-α diminuem ao longo do tempo na interação entre macrófagos e L. loboi, enquanto a adição de LC induz aumento da produção de TNF-α, principalmente após 48 horas. LC modulam negativamente a produção de IL-6 por macrófagos e L. loboi também inibem essa produção por macrófagos isoladamente ou em co-cultivo com LC. L. loboi estimulam significativamente a produção de IL-12 por macrófagos co-cultivados com LC, mas não em LC ou macrófagos isoladamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells. Methods: A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 mg/ml), EGCG (1 and 5 mg/ml), and LL-37 (0.1 and 0.2 mM) individually and in combination (AC-PACs + LL-37 and EGCG + LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Results: LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. ACPACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-a), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-g inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-a, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion. Conclusion: The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D coculture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of acute lymphoblastic leukemia (ALL) blasts with bone marrow (BM) stromal cells (BMSCs) has a positive impact on ALL resistance to chemotherapy. We investigated the modulation of a series of putative asparaginase-resistance/sensitivity genes in B-precursor ALL cells upon coculture with BMSCs. Coculture with stromal cells resulted in increased insulin-like growth factor (IGF)-binding protein 7 (IGFBP7) expression by ALL cells. Assays with IGFBP7 knockdown ALL and stromal cell lines, or with addition of recombinant rIGFBP7 (rIGFBP7) to the culture medium, showed that IGFBP7 acts as a positive regulator of ALL and stromal cells growth, and significantly enhances in-vitro resistance of ALL to asparaginase. In these assays, IGFBP7 function occurred mainly in an insulin-and stromal-dependent manner. ALL cells were found to contribute substantially to extracellular IGFBP7 levels in the conditioned coculture medium. Diagnostic BM plasma from children with ALL had higher levels of IGFBP7 than controls. IGFBP7, in an insulin/IGF-dependent manner, enhanced asparagine synthetase expression and asparagine secretion by BMSCs, thus providing a stromal-dependent mechanism by which IGFBP7 protects ALL cells against asparaginase in this coculture system. Importantly, higher IGFBP7 mRNA levels were associated with lower leukemia-free survival (Cox regression model, P = 0.003) in precursor B-cell Ph(-) ALL patients (n = 147) treated with a contemporary polychemotherapy protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Patients with X-linked hyper-IgM syndrome (X-HIGM) due to CD40 ligand (CD40L) mutations are susceptible to fungal pathogens; however, the underlying susceptibility mechanisms remain poorly understood. Objective: To determine whether monocyte-derived dendritic cells (DCs) from patients with X-HIGM exhibit normal responses to fungal pathogens. Methods: DCs from patients and controls were evaluated for the expression of costimulatory (CD80 and CD86) and MHC class II molecules and for their ability to produce IL-12 and IL-10 in response to Candida albicans and Paracoccidioides brasiliensis. We also evaluated the ability of C albicans- and P brasiliensis-pulsed mature DCs to induce autologous T-cell proliferation, generation of T helper (T-H) 17 cells, and production of IFN-gamma, TGF-beta, IL-4, IL-5, and IL-17. Results: Immature DCs from patients with X-HIGM showed reduced expression of CD80, CD86, and HLA-DR, which could be reversed by exogenous trimeric soluble CD40L. Most important, mature DCs from patients with X-HIGM differentiated by coculturing DCs with fungi secreted minimal amounts of IL-12 but substantial amounts of IL-10 compared with mature DCs from normal individuals. Coculture of mature DCs from X-HIGM patients with autologous T cells led to low IFN-g production, whereas IL-4 and IL-5 production was increased. T-cell proliferation and IL-17 secretion were normal. Finally, in vitro incubation with soluble CD40L reversed the decreased IL-12 production and the skewed T-H(2) pattern response. Conclusion: Absence of CD40L during monocyte/DC differentiation leads to functional DC abnormalities, which may contribute to the susceptibility to fungal infections in patients with X-HIGM. (J Allergy Clin Immunol 2012; 129: 778-86.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problem In this study, we explored the relationship between decidual cells (DC) and interferon (IFN)-gamma, in the presence or absence of ectoplacental cone (EC) using a coculture system. Method of study Decidual cells and EC were isolated from pregnant mice on gestation day 7.5. DCs were cultured for 48 hr and then treated with fresh EC. After characterization, they were treated with IFN-gamma, and cell death was evaluated. Results Interferon-gamma drastically increased decidual apoptosis, which was partially reverted by the addition of EC to the IFN-gamma-treated decidual culture. Moreover, the addition of EC to non-treated DC cultures was also capable of attenuating death rates. Conclusion Resistance to apoptosis may be induced in DC by the EC. This suggests that EC may participate in the inhibition of IFN-gamma-dependent apoptosis and, therefore, play important role for DC survival in a cytokineenriched placental environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Máster Oficial en Cultivos Marinos. Trabajo presentado como requisito parcial para la obtención del Título de Máster Oficial en Cultivos Marinos, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.