961 resultados para Coal washing
Resumo:
Is there a threshold above which hand-rub solution consumption is efficient for decreasing MRSA incidence? [J Hosp Infect. 2009] Association between an index of consumption of hand-rub solution and the incidence of acquired meticillin-resistant Staphylococcus aureus in an intensive care unit.
Resumo:
This document has arisen from a request from BM Alliance Coal Operations Pty Ltd, to undertake and report on the key findings and statistics, key learning’s and recommendations for fatigue related incidents that have occurred at various BM Alliance coal operation mines in Queensland.
Resumo:
This document has arisen from a request from BM Alliance Coal Operations Pty Ltd, to undertake and report on the key findings and statistics, key learning’s and recommendations for vehicle rollover and loss of traction (skid) incidents that have occurred at various BM Alliance coal operation mines in Queensland.
Resumo:
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.
Resumo:
Inter-aquifer mixing studies are usually made carrying out hydrochemical and isotopic techniques only. In this thesis these techniques have been integrated with three-dimensional geological modelling proving to be a better approach for inter—aquifer mixing assessment in regional areas, and also highlighting the influence of faulting in the understanding of groundwater and gas migration, which could not be possible using the two fist techniques alone. The results are of particular interest for coal seam gas basins and can even be used as exploration tools as areas of higher permeability and gas migration were identified.
Resumo:
Existing field data for Rangal coals (Late Permian) of the Bowen Basin, Queensland, Australia, are inconsistent with the depositional model generally accepted in the current geological literature to explain coal deposition. Given the apparent unsuitability of the current depositional model to the Bowen Basin coal data, a new depositional model, here named the Cyclic Salinity Model, is proposed and tested in this study.
Resumo:
Using a combination of multivariate statistical techniques and the graphical assessment of major ion ratios, the influences on hydrochemical variability of coal seam gas (or coal bed methane) groundwaters from several sites in the Surat and Clarence-Moreton basins in Queensland, Australia, were investigated. Several characteristic relationships between major ions were observed: 1) strong positive linear correlation between the Na/Cl and alkalinity/Cl ratios; 2) an exponentially decaying trend between the Na/Cl and Na/alkalinity ratios; 3) inverse linear relationships between increasing chloride concentrations and decreasing pH for high salinity groundwaters, and; 4) high residual alkalinity for lower salinity waters, and an inverse relationship between decreasing residual alkalinity and increasing chloride concentrations for more saline waters. The interpretation of the hydrochemical data provides invaluable insights into the hydrochemical evolution of coal seam gas (CSG) groundwaters that considers both the source of major ions in coals and the influence of microbial activity. Elevated chloride and sodium concentrations in more saline groundwaters appear to be influenced by organic-bound chlorine held in the coal matrix; a sodium and chloride ion source that has largely been neglected in previous CSG groundwater studies. However, contrastingly high concentrations of bicarbonate in low salinity waters could not be explained, and are possibly associated with a number of different factors such as coal degradation, methanogenic processes, the evolution of high-bicarbonate NaHCO3 water types earlier on in the evolutionary pathway, and variability in gas reservoir characteristics. Using recently published data for CSG groundwaters in different basins, the characteristic major ion relationships identified for new data presented in this study were also observed in other CSG groundwaters from Australia, as well as for those in the Illinois Basin in the USA. This observation suggests that where coal maceral content and the dominant methanogenic pathway are similar, and where organic-bound chlorine is relatively abundant, distinct hydrochemical responses may be observed. Comparisons with published data of other NaHCO3 water types in non-CSG environments suggest that these characteristic major ion relationships described here can: i) serve as an indicator of potential CSG groundwaters in certain coal-bearing aquifers that contain methane; and ii) help in the development of strategic sampling programmes for CSG exploration and to monitor potential impacts of CSG activities on groundwater resources.
Resumo:
In this work we discuss the development of a mathematical model to predict the shift in gas composition observed over time from a producing CSG (coal seam gas) well, and investigate the effect that physical properties of the coal seam have on gas production. A detailed (local) one-dimensional, two-scale mathematical model of a coal seam has been developed. The model describes the competitive adsorption and desorption of three gas species (CH4, CO2 and N2) within a microscopic, porous coal matrix structure. The (diffusive) flux of these gases between the coal matrices (microscale) and a cleat network (macroscale) is accounted for in the model. The cleat network is modelled as a one-dimensional, volume averaged, porous domain that extends radially from a central well. Diffusive and advective transport of the gases occurs within the cleat network, which also contains liquid water that can be advectively transported. The water and gas phases are assumed to be immiscible. The driving force for the advection in the gas and liquid phases is taken to be a pressure gradient with capillarity also accounted for. In addition, the relative permeabilities of the water and gas phases are considered as functions of the degree of water saturation.
Resumo:
BACKGROUND: Coal mining is of significant economic importance to the Australian economy. Despite this fact, the related workforce is subjected to a number of psychosocial risks and musculoskeletal injury, and various psychological disorders are common among this population group. Because only limited research has been conducted in this population group, we sought to examine the relationship between physical (pain) and psychological (distress) factors, as well as the effects of various demographic, lifestyle, and fatigue indicators on this relationship. METHODS: Coal miners (N = 231) participated in a survey of musculoskeletal pain and distress on-site during their work shifts. Participants also provided demographic information (job type, age, experience in the industry, and body mass index) and responded to questions about exercise and sleep quality (on- and off-shift) as well as physical and mental tiredness after work. RESULTS: A total of 177 workers (80.5%) reported experiencing pain in at least one region of their body. The majority of the sample population (61.9%) was classified as having low-level distress, 28.4% had scores indicating mild to moderate distress, and 9.6% had scores indicating high levels of distress. Both number of pain regions and job type (being an operator) significantly predicted distress. Higher distress score was also associated with greater absenteeism in workers who reported lower back pain. In addition, perceived sleep quality during work periods partially mediated the relationship between pain and distress. CONCLUSION: The study findings support the existence of widespread musculoskeletal pain among the coal-mining workforce, and this pain is associated with increased psychological distress. Operators (truck drivers) and workers reporting poor sleep quality during work periods are most likely to report increased distress, which highlights the importance of supporting the mining workforce for sustained productivity.
Resumo:
This work explored the applicability of electrocoagulation (EC) using aluminium electrodes for the removal of contaminants which can scale and foul reverse osmosis membranes from a coal seam (CS) water sample, predominantly comprising sodium chloride, and sodium bicarbonate. In general, the removal efficiency of species responsible for scaling and fouling was enhanced by increasing the applied current density/voltage and contact times (30–60 s) in the EC chamber. High removal efficiencies of species potentially responsible for scale formation in reverse osmosis units such as calcium (100%), magnesium (87.9%), strontium (99.3%), barium (100%) and silicates (98.3%) were achieved. Boron was more difficult to eliminate (13.3%) and this was postulated to be due to the elevated solution pH. Similarly, fluoride removal from solution (44%) was also inhibited by the presence of hydroxide ions in the pH range 9–10. Analysis of produced flocs suggested the dominant presence of relatively amorphous boehmite (AlOOH), albeit the formation of Al(OH)3 was not ruled out as the drying process employed may have converted aluminium hydroxide to aluminium oxyhydroxide species. Evidence for adsorption of contaminants on floc surface sites was determined from FTIR studies. The quantity of aluminium released during the electrocoagulation process was higher than the Faradaic amount which suggested that the high salt concentrations in the coal seam water had chemically reacted with the aluminium electrodes.
Resumo:
One of the major problems faced by coal based thermal power stations is handling and disposal of ash. Among the various uses of fly ash, the major quantity of ash produced is used in geotechnical engineering applications such as construction of embankments, as a backfill material, etc. The generally low specific gravity of fly ash resulting in low unit weight as compared to soils is an attractive property for its use in geotechnical applications. In general, specific gravity of coal ash lies around 2.0 but can vary to a large extent (1.6 to 3.1). The variation of specific gravity of coal ash is due to the combination of various factors like gradation, particle shape, and chemical composition. Since specific gravity is an important physical property, it has been studied in depth for three Indian coal ashes and reported in this paper.
Resumo:
The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.
Resumo:
Prior ultraviolet irradiation of coal results in catalysing the subsequent thermal decomposition and ignition of coal. Mechanically, it is shown that ultraviolet radiation brings about the catalysis by acting on the inorganic components of coal.
Resumo:
In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.