992 resultados para Cloud Forest
Resumo:
In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
A patient-centric DRM approach is proposed for protecting privacy of health records stored in a cloud storage based on the patient's preferences and without the need to trust the service provider. Contrary to the current server-side access control solutions, this approach protects the privacy of records from the service provider, and also controls the usage of data after it is released to an authorized user.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
Resumo:
Research over the last two decades has significantly increased our understanding of the evolutionary position of the insects among other arthropods, and the relationships among the insect Orders. Many of these insights have been established through increasingly sophisticated analyses of DNA sequence data from a limited number of genes. Recent results have established the relationships of the Holometabola, but relationships among the hemimetabolous orders have been more difficult to elucidate. A strong consensus on the relationships among the Palaeoptera (Ephemeroptera and Odonata) and their relationship to the Neoptera has not emerged with all three possible resolutions supported by different data sets. While polyneopteran relationships generally have resisted significant resolution, it is now clear that termites, Isoptera, are nested within the cockroaches, Blattodea. The newly discovered order Mantophasmatodea is difficult to place with the balance of studies favouring Grylloblattodea as sister-group. While some studies have found the paraneopteran orders (Hemiptera, Thysanoptera, Phthiraptera and Psocoptera) monophyletic, evidence suggests that parasitic lice (Phthiraptera) have evolved from groups within the book and bark lice (Psocoptera), and may represent parallel evolutions of parasitism within two major louse groups. Within Holometabola, it is now clear that Hymenoptera are the sister to the other orders, that, in turn are divided into two clades, the Neuropteroidea (Coleoptera, Neuroptera and relatives) and the Mecopterida (Trichoptera, Lepidoptera, Diptera and their relatives). The enigmatic order Strepsiptera, the twisted wing insects, have now been placed firmly near Coleoptera, rejecting their close relationship to Diptera that was proposed some 15years ago primarily based on ribosomal DNA data. Phylogenomic-scale analyses are just beginning to be focused on the relationships of the insect orders, and this is where we expect to see resolution of palaeopteran and polyneopteran relationships. Future research will benefit from greater coordination between intra and inter-ordinal analyses. This will maximise the opportunities for appropriate outgroup choice at the intraordinal level and provide the background knowledge for the interordinal analyses to span the maximum phylogenetic scope within groups.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
Objective To identify the spatial and temporal clusters of Barmah Forest virus (BFV) disease in Queensland in Australia, using geographical information systems (GIS) and spatial scan statistic (SaTScan). Methods We obtained BFV disease cases, population and statistical local areas boundary data from Queensland Health and Australian Bureau of Statistics respectively during 1992-2008 for Queensland. A retrospective Poisson-based analysis using SaTScan software and method was conducted in order to identify both purely spatial and space-time BFV disease high-rate clusters. A spatial cluster size of a proportion of the population and a 200km circle radius and varying time windows from 1 month to 12 months were chosen (for the space-time analysis). Results The spatial scan statistic detected a most likely significant purely spatial cluster (including 23 SLAs) and a most likely significant space-time cluster (including 24 SLAs) in approximately the same location. Significant secondary clusters were also identified from both the analyses in several locations. Conclusions This study provides evidence of the existence of statistically significant BFV disease clusters in Queensland, Australia. The study also demonstrated the relevance and applicability of SaTScan in analysing on-going surveillance data to identify clusters to facilitate the development of effective BFV disease prevention and control strategies in Queensland, Australia.
Resumo:
The eastern Australian rainforests have experienced several cycles of range contraction and expansion since the late Miocene that are closely correlated with global glaciation events. Together with ongoing aridification of the continent, this has resulted in current distributions of native closed forest that are highly fragmented along the east coast. Several closed forest endemic taxa exhibit patterns of population genetic structure that are congruent with historical isolation of populations in discrete refugia and reflect evolutionary histories dramatically affected by vicariance. Currently, limited data are available regarding the impact of these past climatic fluctuations on freshwater invertebrate taxa. The non-biting midge species Echinocladius martini Cranston is distributed along the east coast and inhabits predominantly montane streams in closed forest habitat. Phylogeographic structure in E. martini was resolved here at a continental scale by incorporating data from a previous pilot study and expanding the sampling design to encompass populations in the Wet Tropics of north-eastern Queensland, south-east Queensland, New South Wales and Victoria. Patterns of phylogeographic structure revealed several deeply divergent mitochondrial lineages from central and south-eastern Australia that were previously unrecognised and were geographically endemic to closed forest refugia. Estimated divergence times were congruent with late Miocene onset of rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow among E. martini populations isolated in refugia has been highly restricted historically. Moreover, these data imply, in contrast to existing preconceptions about freshwater invertebrates, that this taxon may be acutely susceptible to habitat fragmentation.
Resumo:
Barmah Forest Virus (BFV) disease is the most rapidly emerging mosquito-borne disease in Australia. BFV transmission depends on factors such as climate, virus, vector and the human population. However, the impact of climatic and social factors on BFV remains to be determined. This paper provided an overview of current research and discusses the future research directions on the BFV transmission. These research findings could be regarded as an impetus towards BFV prevention and control strategies.