810 resultados para Climatic episode
Resumo:
Male flowering was studied at the canopy level in 10 silver birch (Betula pendula Roth) stands from 8 localities and in 14 downy birch (B. pubescens Ehrh.) stands from 10 localities in Finland from 1963 to 1973. Distributions of cumulative pollen catches were compared to the normal Gaussian distribution. The basis for the timing of flowering was the 50 per cent point of the anthesis-fitted normal distribution. To eliminate effects of background pollen, only the central, normally distributed part of the cumulative distribution was used. Development up to the median point of the distribution was measured and tested in calendar days, in degree days (> 5 °C) and in period units. The count of each parameter began on and included March 19. Male flowering in silver birch occurred from late April to late June depending on latitude, and flowering in downy birch took place from early May to early July. The heat sums needed for male flowering varied in downy birch stands latitudinally but there was practically no latitudinal variation in heat sums needed for silver birch flowering. The amount of male flowering in stands of both birch species were found to have a large annual variation but without any clear periodicity. The between years pollen catch variation in stands of either birch species did not show any significant latitudinal correlation in contrast to Norway spruce stands. The period unit heat sum gave the most accurate forecast of the timing of flowering for 60 per cent of the silver birch stands and for 78.6 per cent of the for downy birch stands. Calendar days, however, gave the best forecast for silver birch in 25 per cent of the cases, while degree days gave the best forecast for downy birch in 21.4 per cent of the cases. Silver birch seems to have a local inclination for a more fixed flowering date compared to downy birch, which could mean a considerable photoperiodic influence on flowering time of silver birch. Silver birch and downy birch had different geographical correlations. Frequent hybridization of birch species occurs more often in northern Finland in than in more southern latitudes. The different timing in flowering caused increasing scatter in flowering times in the north, especially in the case of downy birch. The chance of simultaneous flowering of silver birch and downy birch so increased northwards due to a more variable climate and also higher altitudinal variations. Compared with conifers, the reproduction cycles of both birch species were found to be well protected from damage by frost.
Resumo:
The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.
Resumo:
Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discoverymethods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies.Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.
Resumo:
In this paper we consider the process of discovering frequent episodes in event sequences. The most computationally intensive part of this process is that of counting the frequencies of a set of candidate episodes. We present two new frequency counting algorithms for speeding up this part. These, referred to as non-overlapping and non-inteleaved frequency counts, are based on directly counting suitable subsets of the occurrences of an episode. Hence they are different from the frequency counts of Mannila et al [1], where they count the number of windows in which the episode occurs. Our new frequency counts offer a speed-up factor of 7 or more on real and synthetic datasets. We also show how the new frequency counts can be used when the events in episodes have time-durations as well.
Resumo:
Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discovery methods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies. Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.
Resumo:
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.
Resumo:
Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Frequent episode discovery is a popular framework for pattern discovery from sequential data. It has found many applications in domains like alarm management in telecommunication networks, fault analysis in the manufacturing plants, predicting user behavior in web click streams and so on. In this paper, we address the discovery of serial episodes. In the episodes context, there have been multiple ways to quantify the frequency of an episode. Most of the current algorithms for episode discovery under various frequencies are apriori-based level-wise methods. These methods essentially perform a breadth-first search of the pattern space. However currently there are no depth-first based methods of pattern discovery in the frequent episode framework under many of the frequency definitions. In this paper, we try to bridge this gap. We provide new depth-first based algorithms for serial episode discovery under non-overlapped and total frequencies. Under non-overlapped frequency, we present algorithms that can take care of span constraint and gap constraint on episode occurrences. Under total frequency we present an algorithm that can handle span constraint. We provide proofs of correctness for the proposed algorithms. We demonstrate the effectiveness of the proposed algorithms by extensive simulations. We also give detailed run-time comparisons with the existing apriori-based methods and illustrate scenarios under which the proposed pattern-growth algorithms perform better than their apriori counterparts. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Background: Cognitive impairments are seen in first psychotic episode (FEP) patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF) levels are associated with cognitive impairment in FEP patients compared with healthy controls. Methods: 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. Results: Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability,immediate and delayed memory, abstract thinking and processing speed) which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ) and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. Conclusion: Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.
Resumo:
Background: This study aimed to examine factors associated with treatment adherence in first-episode psychosis (FEP) patients followed up over 8 years, especially involuntary first admission and stopping cannabis use. Methods: This prospective, longitudinal study of FEP patients collected data on symptoms, adherence, functioning,and substance use. Adherence to treatment was the main outcome variable and was categorized as ‘good’ or ‘bad’. Cannabis use during follow-up was stratified as continued use, stopped use, and never used. Bivariate and logistic regression models identified factors significantly associated with adherence and changes in adherence over the 8-year follow-up period. Results: Of the 98 FEP patients analyzed at baseline, 57.1% had involuntary first admission, 74.4% bad adherence,and 52% cannabis use. Good adherence at baseline was associated with Global Assessment of Functioning score (p = 0.019), Hamilton Depression Rating Scale score (p = 0.017) and voluntary admission (p < 0.001). Adherence patterns over 8 years included: 43.4% patients always bad, 26.1% always good, 25% improved from bad to good. Among the improved adherence group, 95.7% had involuntary first admission and 38.9% stopped cannabis use. In the subgroup of patients with bad adherence at baseline, involuntary first admission and quitting cannabis use during follow up were associated with improved adherence. Conclusions: The long-term association between treatment adherence and type of first admission and cannabis use in FEP patients suggest targets for intervention to improve clinical outcomes.
Resumo:
The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.
It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.
Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.
Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.
The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.
Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.
The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.
It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.
Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.
Resumo:
The dace, Leuciscus leuciscus (L.) is an important cyprinid in terms of population biomass in chalk streams of southern England. Dace recruitment has been shown to vary widely from year to year and it is thought that this variation is largely as a result of the influence of abiotic factors, chiefly water temperature. From 1968 to 1981 there was a thirteen-fold difference in the year class structure index between the minimum index (0.25 in 1972) and the maximum (3.21 in 1976). The problems of such variation, especially those that could ensue from a succession of poor year-classes, are offset by the spread of reproductive effort by each female over several years.