977 resultados para Classification tree


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Prism family of algorithms induces modular classification rules in contrast to the Top Down Induction of Decision Trees (TDIDT) approach which induces classification rules in the intermediate form of a tree structure. Both approaches achieve a comparable classification accuracy. However in some cases Prism outperforms TDIDT. For both approaches pre-pruning facilities have been developed in order to prevent the induced classifiers from overfitting on noisy datasets, by cutting rule terms or whole rules or by truncating decision trees according to certain metrics. There have been many pre-pruning mechanisms developed for the TDIDT approach, but for the Prism family the only existing pre-pruning facility is J-pruning. J-pruning not only works on Prism algorithms but also on TDIDT. Although it has been shown that J-pruning produces good results, this work points out that J-pruning does not use its full potential. The original J-pruning facility is examined and the use of a new pre-pruning facility, called Jmax-pruning, is proposed and evaluated empirically. A possible pre-pruning facility for TDIDT based on Jmax-pruning is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The substitution of missing values, also called imputation, is an important data preparation task for many domains. Ideally, the substitution of missing values should not insert biases into the dataset. This aspect has been usually assessed by some measures of the prediction capability of imputation methods. Such measures assume the simulation of missing entries for some attributes whose values are actually known. These artificially missing values are imputed and then compared with the original values. Although this evaluation is useful, it does not allow the influence of imputed values in the ultimate modelling task (e.g. in classification) to be inferred. We argue that imputation cannot be properly evaluated apart from the modelling task. Thus, alternative approaches are needed. This article elaborates on the influence of imputed values in classification. In particular, a practical procedure for estimating the inserted bias is described. As an additional contribution, we have used such a procedure to empirically illustrate the performance of three imputation methods (majority, naive Bayes and Bayesian networks) in three datasets. Three classifiers (decision tree, naive Bayes and nearest neighbours) have been used as modelling tools in our experiments. The achieved results illustrate a variety of situations that can take place in the data preparation practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evidentiary basis of the currently accepted classification of living amphibians is discussed and shown not to warrant the degree of authority conferred on it by use and tradition. A new taxonomy of living amphibians is proposed to correct the deficiencies of the old one. This new taxonomy is based on the largest phylogenetic analysis of living Amphibia so far accomplished. We combined the comparative anatomical character evidence of Haas (2003) with DNA sequences from the mitochondrial transcription unit HI (12S and 16S ribosomal RNA and tRNA(Valine) genes, 2,400 bp of mitochondrial sequences) and the nuclear genes histone H3, rhodopsin, tyrosinase, and seven in absentia, and the large ribosomal subunit 28S (approximate to 2,300 bp of nuclear sequences; ca. 1.8 million base pairs; x ($) over bar = 3.7 kb/terminal). The dataset includes 532 terminals sampled from 522 species representative of the global diversity of amphibians as well as seven of the closest living relatives of amphibians for outgroup comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Powdery mildew of rubber tree caused by Oidium heveae is an important disease of rubber plantations worldwide. Identification and classification of this fungus is still uncertain because there is no authoritative report of its morphology and no record of its teleomorphic stage. In this study, we compared five specimens of the rubber powdery mildew fungus collected in Malaysia, Thailand, and Brazil based on morphological and molecular characteristics. Morphological results showed that the fungus on rubber tree belongs to Oidium subgen. Pseudoidium. Nucleotide sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region and the large subunit rRNA gene (28S rDNA) were conducted to determine the relationships of the rubber powdery mildew fungus and to link this anamorphic fungus with its allied teleomorph. The results showed that the rDNA sequences of the two specimens from Malaysia were identical to a specimen from Thailand, whereas they differed by three bases from the two Brazilian isolates: one nucleotide position in the ITS2 and two positions in the 28S sequences. The ITS sequences of the two Brazilian isolates were identical to sequences of Erysiphe sp. on Quercus phillyraeoides collected in Japan, although the 28S sequences differed at one base from sequences of this fungus. Phylogenetic trees of both rDNA regions constructed by the distance and parsimony methods showed that the rubber powdery mildew fungus grouped with Erysiphe sp. on Q. phillyraeoides with 100% bootstrap support. Comparisons of the anamorph of two isolates of Erysiphe sp. from Q. phillyraeoides with the rubber mildew did not reveal any obvious differences between the two powdery mildew taxa, which suggests that O. heveae may be an anamorph of Erysiphe sp. on Q. phillyraeoides. Cross-inoculation tests are required to substantiate this conclusion. © The Mycological Society of Japan and Springer-Verlag 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other colubrid groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.