962 resultados para Classification de types de pieds
Resumo:
A novel approach is presented for the evaluation of circulation type classifications (CTCs) in terms of their capability to predict surface climate variations. The approach is analogous to that for probabilistic meteorological forecasts and is based on the Brier skill score. This score is shown to take a particularly simple form in the context of CTCs and to quantify the resolution of a climate variable by the classifications. The sampling uncertainty of the skill can be estimated by means of nonparametric bootstrap resampling. The evaluation approach is applied for a systematic intercomparison of 71 CTCs (objective and manual, from COST Action 733) with respect to their ability to resolve daily precipitation in the Alpine region. For essentially all CTCs, the Brier skill score is found to be higher for weak and moderate compared to intense precipitation, for winter compared to summer, and over the north and west of the Alps compared to the south and east. Moreover, CTCs with a higher number of types exhibit better skill than CTCs with few types. Among CTCs with comparable type number, the best automatic classifications are found to outperform the best manual classifications. It is not possible to single out one ‘best’ classification for Alpine precipitation, but there is a small group showing particularly high skill.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
Two previous reconstructions of palaeovegetation across the whole of China were performed using a simple classification of plant functional types (PFTs). Now a more explicit, global PFT classification scheme has been developed, and a substantial number of additional pollen records have become available. Here we apply the global scheme of PFTs to a comprehensive set of pollen records available from China to test the applicability of the global scheme of PFTs in China, and to obtain a well-founded reconstruction of changing palaeovegetation patterns. A total of 806 pollen surface samples, 188 mid-Holocene (MH, 6000 14C yr BP) and 50 last glacial maximum (LGM, 18,000 14C yr BP) pollen records were used to reconstruct vegetation patterns in China, based on a new global classification system of PFTs and a standard numerical technique for biome assignment (biomization). The biome reconstruction based on pollen surface samples showed convincing agreement with present potential natural vegetation. Coherent patterns of change in biome distribution between MH, LGM and present are observed. In the MH, cold and cool-temperate evergreen needleleaf forests and mixed forests, temperate deciduous broadleaf forest, and warm-temperate evergreen broadleaf and mixed forest in eastern China were shifted northward by 200–500 km. Cold-deciduous forest in northeastern China was replaced by cold evergreen needleleaf forest while in central northern China, cold-deciduous forest was present at some sites now occupied by temperate grassland and desert. The forest–grassland boundary was 200–300 km west of its present position. Temperate xerophytic shrubland, temperate grassland and desert covered a large area on the Tibetan Plateau, but the area of tundra was reduced. Treeline was 300–500 m higher than present in Tibet. These changes imply generally warmer winters, longer growing seasons and more precipitation during the MH. Westward shifts of the forest–shrubland–grassland and grassland–desert boundaries imply greater moisture availability in the MH, consistent with a stronger summer monsoon. During the LGM, in contrast, cold-deciduous forest, cool-temperate evergreen needleleaf forest, cool mixed forests, warm-temperate evergreen broadleaf and mixed forest in eastern China were displaced to the south by 300–1000 km, while temperate deciduous broadleaf forest, pure warm-temperate evergreen forest, tropical semi-evergreen and evergreen broadleaf forests were restricted or absent from the mainland of southern China, implying colder winters than present. Strong shifts of temperate xerophytic shrubland, temperate grassland and desert to the south and east in northern and western China and on the Tibetan Plateau imply drier conditions than present.
Resumo:
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole-plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm-temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade-offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.
Resumo:
Involuntary musical imagery (INMI) is the subject of much recent research interest. INMI covers a number of experience types such as musical obsessions and musical hallucinations. One type of experience has been called earworms, for which the literature provides a number of definitions. In this paper we consider the origins of the term earworm in the German language literature and compare that usage with the English language literature. We consider the published literature on earworms and conclude that there is merit in distinguishing between earworms and other types of types of involuntary musical imagery described in the scientific literature: e.g. musical hallucinations, musical obsessions. We also describe other experiences that can be considered under the term INMI. The aim of future research could be to ascertain similarities and differences between types of INMI with a view to refining the classification scheme proposed here.
Resumo:
Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.
Resumo:
Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in different situations.
Resumo:
Differently from theoretical scale-free networks, most real networks present multi-scale behavior, with nodes structured in different types of functional groups and communities. While the majority of approaches for classification of nodes in a complex network has relied on local measurements of the topology/connectivity around each node, valuable information about node functionality can be obtained by concentric (or hierarchical) measurements. This paper extends previous methodologies based on concentric measurements, by studying the possibility of using agglomerative clustering methods, in order to obtain a set of functional groups of nodes, considering particular institutional collaboration network nodes, including various known communities (departments of the University of Sao Paulo). Among the interesting obtained findings, we emphasize the scale-free nature of the network obtained, as well as identification of different patterns of authorship emerging from different areas (e.g. human and exact sciences). Another interesting result concerns the relatively uniform distribution of hubs along concentric levels, contrariwise to the non-uniform pattern found in theoretical scale-free networks such as the BA model. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).
Resumo:
This paper reports on a sensor array able to distinguish tastes and used to classify red wines. The array comprises sensing units made from Langmuir-Blodgett (LB) films of conducting polymers and lipids and layer-by-layer (LBL) films from chitosan deposited onto gold interdigitated electrodes. Using impedance spectroscopy as the principle of detection, we show that distinct clusters can be identified in principal component analysis (PCA) plots for six types of red wine. Distinction can be made with regard to vintage, vineyard and brands of the red wine. Furthermore, if the data are treated with artificial neural networks (ANNs), this artificial tongue can identify wine samples stored under different conditions. This is illustrated by considering 900 wine samples, obtained with 30 measurements for each of the five bottles of the six wines, which could be recognised with 100% accuracy using the algorithms Standard Backpropagation and Backpropagation momentum in the ANNs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)