899 resultados para Classificació AMS::93 Systems Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control systems theory can be a discipline difficult to learn without some laboratory help. With the help of focused laboratories this discipline turns to be very interesting to the students involved. The main problem is that laboratories aren't always available to students, and sometimes, when they are available, aren't big enough to a growing student population. Thus, with computer networks growing so fast, why don't create remote control labs that can be used by a large number of students? Why don't create remote control labs using Internetⓒ Copyright ?2001 IFAC Keywords: Remote Control, Computer Networks, Database, Educational Aids, Laboratory Education, Communication Control Applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines selected methodological insights that complexity theory might provide for planning. In particular, it focuses on the concept of fractals and, through this concept, how ways of organising policy domains across scales might have particular causal impacts. The aim of this article is therefore twofold: (a) to position complexity theory within social science through a ‘generalised discourse’, thereby orienting it to particular ontological and epistemological biases and (b) to reintroduce a comparatively new concept – fractals – from complexity theory in a way that is consistent with the ontological and epistemological biases argued for, and expand on the contribution that this might make to planning. Complexity theory is theoretically positioned as a neo-systems theory with reasons elaborated. Fractal systems from complexity theory are systems that exhibit self-similarity across scales. This concept (as previously introduced by the author in ‘Fractal spaces in planning and governance’) is further developed in this article to (a) illustrate the ontological and epistemological claims for complexity theory, and to (b) draw attention to ways of organising policy systems across scales to emphasise certain characteristics of the systems – certain distinctions. These distinctions when repeated across scales reinforce associated processes/values/end goals resulting in particular policy outcomes. Finally, empirical insights from two case studies in two different policy domains are presented and compared to illustrate the workings of fractals in planning practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines when “incremental” change is likely to trigger “discontinuous” change, using the lens of complex adaptive systems theory. Going beyond the simulations and case studies through which complex adaptive systems have been approached so far, we study the relationship between incremental organizational reconfigurations and discontinuous organizational restructurings using a large-scale database of U.S. Fortune 50 industrial corporations. We develop two types of escalation process in organizations: accumulation and perturbation. Under ordinary conditions, it is perturbation rather than the accumulation that is more likely to trigger subsequent discontinuous change. Consistent with complex adaptive systems theory, organizations are more sensitive to both accumulation and perturbation in conditions of heightened disequilibrium. Contrary to expectations, highly interconnected organizations are not more liable to discontinuous change. We conclude with implications for further research, especially the need to attend to the potential role of managerial design and coping when transferring complex adaptive systems theory from natural systems to organizational systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we discuss some qualitative and geometric aspects of non-smooth dynamical systems theory. Our goal is to study the diagram bifurcation of typical singularities that occur generically in one parameter families of certain piecewise smooth vector fields named Refracted Systems. Such systems has a codimension-one submanifold as its discontinuity set. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this thesis is to facilitate the process of industrial automated systems development applying formal methods to ensure the reliability of systems. A new formulation of distributed diagnosability problem in terms of Discrete Event Systems theory and automata framework is presented, which is then used to enforce the desired property of the system, rather then just verifying it. This approach tackles the state explosion problem with modeling patterns and new algorithms, aimed for verification of diagnosability property in the context of the distributed diagnosability problem. The concepts are validated with a newly developed software tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-systems theorists posit distinct modes of reasoning. The intuition system reasons automatically and its processes are unavailable to conscious introspection. The deliberation system reasons effortfully while its processes recruit working memory. The current paper extends the application of such theories to the study of Obsessive-Compulsive Disorder (OCD). Patients with OCD often retain insight into their irrationality, implying dissociable systems of thought: intuition produces obsessions and fears that deliberation observes and attempts (vainly) to inhibit. To test the notion that dual-systems theory can adequately describe OCD, we obtained speeded and unspeeded risk judgments from OCD patients and non-anxious controls in order to quantify the differential effects of intuitive and deliberative reasoning. As predicted, patients deemed negative events to be more likely than controls. Patients also took more time in producing judgments than controls. Furthermore, when forced to respond quickly patients' judgments were more affected than controls'. Although patients did attenuate judgments when given additional time, their estimates never reached the levels of controls'. We infer from these data that patients have genuine difficulty inhibiting their intuitive cognitive system. Our dual-systems perspective is compatible with current theories of the disorder. Similar behavioral tests may prove helpful in better understanding related anxiety disorders. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.