1000 resultados para Classificação supervisionada de imagens
Resumo:
This paper describes an approach for the colour-based classification of RGB (red-green-blue) images, acquired using a common scanner, of commercial carbonated soft drinks. Mean histograms of image colour channels were evaluated for the PCA classification of 29 brands of Guaraná, Cola, and orange flavors. Loadings for principal component axes resulted in different patterns for sample grouping on score plots according to RGB histograms. pH, sorbic acid and sucrose measurements were also correlated to the analyzed brands through PCA score plots of the digitalized images.
Resumo:
Este trabalho teve como objetivo comparar as imagens orbitais fornecidas pelos satélites CBERS-2, IRS-P6 e Quickbird para o mapeamento dos estádios de sucessão florestal, utilizando-se diferentes métodos de classificação de imagens digitais. A área de estudo incluiu as reservas de floresta nativa pertencentes ao projeto florestal Macedônia, localizado nos Municípios de Bugre e Ipaba, entre os paralelos 19º19'00"S e 19º24'30"S e os meridianos 42º27'00"W e 42º21'00"W, Estado de Minas Gerais. Foram utilizadas as classificações visual, por pixel e por regiões. Para fins de avaliação da fidedignidade da classificação de cada método, de forma particular, foi gerada a matriz de erros e calculado o índice Kappa. Para testar a significância estatística da diferença entre dois índices Kappa, foi utilizado o teste Z. De maneira geral, os melhores resultados foram as classificações obtidas nos métodos por regiões e visual, apresentando valores de Kappa mais elevados que as classificações por pixel; a imagem resultante da fusão da imagem IRS com a CBERS, classificada pelo método de regiões, obteve o melhor índice Kappa, estando dentro do nível considerado como bom. Os problemas de separação entre as classes resultaram em classificações com baixo nível de exatidão, o que pode ser explicado pela semelhança espectral entre os alvos (estádios inicial, médio e avançado de sucessão florestal), pequena variação entre os valores numéricos dos pixels, existência de sobreposição entre classes e baixa resolução espectral dos sensores.
Resumo:
A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.
Resumo:
O desenvolvimento de novos, e mais eficientes, métodos de classificação de imagem digitais em Sensoriamento Remoto se constitui em uma importante área que tem chamado a atenção de muitos pesquisadores. Nesta área em particular, um problema que freqüentemente surge para a classificação de imagens digitais provenientes de cenas naturais, é a ocorrência de classes espectrais com resposta espectral muito similar. Nestes casos, os sistemas sensores mais comuns e os métodos tradicionais de classificação de imagem apresentam muito baixa precisão ou mesmo falham completamente. Várias abordagens vem sendo propostas na literatura. Uma das possíveis abordagens consiste em fazer uso de informações auxiliares que possuam poder discriminante para as classes sob análise. Esta é a possibilidade explorada nesta dissertação, utilizar-se de dados auxiliares, provenientes de fontes diversas, tais como: temperatura, precipitação, altitude e classes de solo. Estes dados são então combinados com dados provenientes de imagens multiespectrais de acordo com a Teoria de Evidência proposta por Dempster e Shafer. Esta abordagem é testada usando dados de uma área no Estado do Rio Grande do Sul, Brasil, com a finalidade de delimitar a ocorrência da Mata Nativa com Araucária (composta pela conifera Araucaria angustifolia), que é de difícil separação em relação a outras classes espectrais que ocorrem na região, tornando difícil o processo preciso de classificação.
Resumo:
A tradicional técnica de regressão logística, muito conhecida e utilizada em estudos médicos, permitia apenas a modelagem de variáveis-resposta binárias. A extensão do modelo logístico para variáveis-resposta multinominais ampliou em muito as áreas de aplicação de regressão logística. Na área de reconhecimento de padrões o modelo logístico multinominal recebeu a denominação de discriminação logística apresenta aparentes vantagens em relação a métodos convencionais de classificação. O método da máxima verossimilhança gaussiana, amplamente difundido e utilizado, necessita da estimação de um número muito grande de parâmetros, pois supõe que as distribuições subjacentes de cada classe sejam normais multivariadas. A discriminação logística por sua vez, não faz restrições quanto a forma funcional das variáveis, e o número de parâmetros do modelo é relativamente pequeno. Nesse estudo, os princípios da técnica de discriminação logística são apresentados detalhadamente, bem como aplicações práticas de classificação de imagens Landsat-TM e AVIRIS. Os procedimentos de discriminação logística e da máxima verossimilhança gaussiana foram comparados a partir de dados reais e simulados. Os resultados sugerem que a discriminação logística seja considerada como uma alternativa ao método da máximaverossimilhança gaussiana, principalmente quando os dados apresentarem desvios da normalidade.
Resumo:
Presentemente, os métodos utilizados no processo classificação de imagens, em sua grande maioria, fazem uso exclusivamente dos atributos espectrais. Nesta pesquisa,são introduzidos os atributos espaciais, em particular a textura, no processo de classificação de imagens digitais. As informações de textura são quantificadas pelo método das matrizes de co-ocorrência, proposto por Haralick, e organizadas em um formato similar ao utilizado nas bandas espectrais, gerando desta forma canais de textura. Com a implementação deste atributo em adição aos espectrais, obtêm-se um acréscimo na exatidão obtida no processo de classificação de imagens.
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Resumo:
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries
Resumo:
The merit of the Karhunen-Loève transform is well known. Since its basis is the eigenvector set of the covariance matrix, a statistical, not functional, representation of the variance in pattern ensembles is generated. By using the Karhunen-Loève transform coefficients as a natural feature representation of a character image, the eigenvector set can be regarded as an feature extractor for a classifier.
Resumo:
The growth of large cities is usually accelerated and disorganized, which causes social, economical and infrastructural conflicts and frequently, occupation in illegal areas. For a better administration of these areas, the public manager needs information about their location. This information can be obtained through land utilization and land cover maps, where orbital images of remote sensing are used as one of the most traditional sources of data. In this context, the present work tested the applicability of the object-based classification to categorize two slum areas, taking into account the structure of the streets, size of the huts, distance between the houses, among other parameters. These area combinations of physical aspects were analyzed using the image IKONOS II and the software eCognition. Slum areas tend to be, to the contrary of the planned areas, disarranged, with narrow streets, small houses built with a variety of materials and without definition of blocks. The results of land cover classification for slum areas are encouraging because they are accurate and little ambiguous in the classification process. Thus, it would allow its utilization by urban managers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)