66 resultados para Cladophora.
Resumo:
Cladophora peruviana (W.R.Taylor) E.Y.Dawson, Acleto & Foldvik
Resumo:
Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The broad objectives of the work were to develop standard methods for the routine biological surveillance of river water quality, using the non-planktonic algae. Studies on sampling methodology indicated that natural substrata should be sampled directly wherever possible, but for routine purposes, only a semi-quantitative approach was found to be feasible. Artificial substrata were considered to be useful for sample collection in deeper waters, and of three different types tested, Polythene strips were selected for further investigation essentially on grounds of practicality. These were tested in the deeper reaches of a wide range of river types and water qualities: 26 pool sites in 14 different rivers were studied over a period of 9 months. At each site, the assemblages developing on 3 strips following a 4, or less commonly, an 3 week immersion period were analysed quantitatively. Where possible, the natural substrata were also sampled semi-quantitatively at each site, and at a nearby riffle. The results of this survey were very fragmentary: many strips failed to yield useful data, and the results were often difficult to interpret, and of limited value for water quality surveillance purposes. In one river, the Churnet, the natural substrata at 14 riffle sites were sampled semi-quantitatively on 14 occasions at intervals of 4 weeks. In this survey, the results were more readily interpreted in relation to water quality, and no special data processing was found to be necessary or helpful. Further studies carried out on the filamentous green alga Cladophora showed that this alga may have some value as a bioaccumulation indicator for metals, and as a bioassay organism for the assessment of the algal growth promoting potential of natural river waters.