933 resultados para Citizen Kane
Resumo:
This qualitative research expands understanding of how information about a range of Novel Food Technologies (NFTs) is used and assimilated, and the implications of this on the evolution of attitudes and acceptance. This work enhances theoretical and applied understanding of citizens’ evaluative processes around these technologies. The approach applied involved observations of interactive exchanges between citizens and information providers (i.e. food scientists), during which they discussed a specific technology. This flexible, yet structured, approach revealed how individuals construct meaning around information about specific NFTs. A rich dataset of 42 ‘deliberate discourse’ and 42 postdiscourse transcripts was collected. Data analysis encompassed three stages: an initial descriptive account of the complete dataset based on the top-down bottom-up (TDBU) model of attitude formation, followed by inductive and deductive thematic analysis across the selected technology groups. The hybrid thematic analysis undertaken identified a Conceptual Model, which represents a holistic perspective on the influences and associated features directing ‘sense-making’ and ultimate evaluations around the technology clusters. How individuals make sense of these technologies is shaped by: their beliefs, values and personal characteristics; their perceptions of power and control over the application of the technology; and, the assumed relevance of the technology and its applications within different contexts. These influences form the frame for the creation of sense-making around the technologies. Internal negotiations between these influences are evident and evaluations are based on the relative importance of each influence to the individual, which tend to contribute to attitude ambivalence and instability. The findings indicate the processes of forming and changing attitudes towards these technologies are: complex; dependent on characteristics of the individual, technology, application and product; and, impacted by the nature and forms of information provided. Challenges are faced in engaging with the public about these technologies, as levels of knowledge, understanding and interest vary.
Resumo:
Family dogs and dog owners offer a potentially powerful way to conduct citizen science to answer questions about animal behavior that are difficult to answer with more conventional approaches. Here we evaluate the quality of the first data on dog cognition collected by citizen scientists using the Dognition.com website. We conducted analyses to understand if data generated by over 500 citizen scientists replicates internally and in comparison to previously published findings. Half of participants participated for free while the other half paid for access. The website provided each participant a temperament questionnaire and instructions on how to conduct a series of ten cognitive tests. Participation required internet access, a dog and some common household items. Participants could record their responses on any PC, tablet or smartphone from anywhere in the world and data were retained on servers. Results from citizen scientists and their dogs replicated a number of previously described phenomena from conventional lab-based research. There was little evidence that citizen scientists manipulated their results. To illustrate the potential uses of relatively large samples of citizen science data, we then used factor analysis to examine individual differences across the cognitive tasks. The data were best explained by multiple factors in support of the hypothesis that nonhumans, including dogs, can evolve multiple cognitive domains that vary independently. This analysis suggests that in the future, citizen scientists will generate useful datasets that test hypotheses and answer questions as a complement to conventional laboratory techniques used to study dog psychology.
Resumo:
Technology-supported citizen science has created huge volumes of data with increasing potential to facilitate scientific progress, however, verifying data quality is still a substantial hurdle due to the limitations of existing data quality mechanisms. In this study, we adopted a mixed methods approach to investigate community-based data validation practices and the characteristics of records of wildlife species observations that affected the outcomes of collaborative data quality management in an online community where people record what they see in the nature. The findings describe the processes that both relied upon and added to information provenance through information stewardship behaviors, which led to improved reliability and informativity. The likelihood of community-based validation interactions were predicted by several factors, including the types of organisms observed and whether the data were submitted from a mobile device. We conclude with implications for technology design, citizen science practices, and research.