958 resultados para Cingulate cortex
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Context: Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown. Objective: To investigate the effects of 2 main psycho-active constituents of Cannabis sativa (Delta 9-tetrahydrocannabinol [Delta 9-THC] and cannabidiol [CBD]) on regional brain function during emotional processing. Design: Subjects were studied on 3 separate occasions using an event-related functional magnetic resonance imaging paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10 mg of Delta 9-THC, 600 mg of CBD, or a placebo in a double-blind, randomized, placebo-controlled design. Participants: Fifteen healthy, English-native, right-handed men who had used cannabis 15 times or less in their life. Main Outcome Measures: Regional brain activation (blood oxygenation level-dependent response), electrodermal activity (skin conductance response [SCR]), and objective and subjective ratings of anxiety. Results: Delta 9-Tetrahydrocannabinol increased anxiety, as well as levels of intoxication, sedation, and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of Delta 9-THC but decreased following administration of CBD. Cannabidiol attenuated the blood oxygenation level dependent signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and anterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. Delta 9-Tetrahydrocannabinol mainly modulated activation in frontal and parietal areas. Conclusions: Delta 9-Tetrahydrocannabinol and CBD had clearly distinct effects on the neural, electrodermal, and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to reduce autonomic arousal and subjective anxiety, whereas the anxiogenic effects of Delta 9-THC may be related to effects in other brain regions.
Resumo:
There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We analyzed the expression profile of two NMDAR1 mRNA isoform subsets. NR1(0xx) and NR1(1xx), in discrete regions of human cerebral cortex. The subsets are characterized by the absence or presence of a 21-amino acid N-terminal cassette. Reverse transcription polymerase chain reaction for NR1 isoforms was performed on total RNA preparations from spared and susceptible regions from 10 pathologically confirmed Alzheimer's disease (AD) cases and 10 matched controls. Primers spanning the splice insert yielded two bands, 342 bp (NR1(0xx)) and 405 bp (NR1(1xx)), on agarose gel electrophoresis. The bands were visualized with ethidium and quantified by densitometry. NR1(1xx) transcript expression was calculated as a proportion of the NR1(1xx) + NR1(0xx) total. Values were significantly lower in AD cases than in controls in mid-cingulate cortex, p < 0.01, superior temporal cortex, p < 0.01 and hippocampus, p similar to 0.05. Cortical proportionate NR1(1xx) transcript expression was invariant over the range of ages acid areas of controls tested, at similar to 50%. This was also true for AD motor and occipital cortex. Proportionate NR1(1xx) expression in AD cingulate and temporal cortex was lower at younger ages and increased with age: this regression was significantly different from that in the homotropic areas of controls. Variations in NR1 N-terminal cassette expression may underlie the local vulnerability to excitotoxic damage of some areas in the AD brain. Alternatively, changes in NR1 mRNA expression may arise as a consequence of the AD disease process.
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production. (C) 2001 Wiley-Liss, Inc.
Resumo:
Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test for differences in the DMN activation between groups. Participants from the jet lag group presented decreased activation in the anterior nodes of the DMN, specifically in bilateral medial prefrontal and anterior cingulate cortex. No areas of increased activation were observed for the jet lag group. These results may be suggestive of a negative impact of jet lag on important cognitive functions such as introspection, emotional regulation and decision making in a few days after individuals arrive at their destination.
Resumo:
In recent years research explored different acupuncture stimulation techniques but interest has focused primarily on somatic acupuncture and on a limited number of acupoints. As regards ear Acupuncture (EA) there is still some criticism about the clinical specificity of auricular points/areas representing organs or structures of the body. The aim of this study was to verify through (Functional magnetic resonance imaging) fMRI the hypothesis of EA point specificity using two auricular points having different topographical locations and clinical significance. Six healthy volunteers underwent two experimental fMRI sessions: the first was dedicated to the stimulation of Thumb Auricular Acupoint (TAA) and the second to the stimulation of Brain Stem Auricular Acupoint (BSAA). The stimulation of the needle placed in the TAA of the left ear produced an increase in activation bilaterally in the parietal operculum, region of the secondary somatosensory area SII. Stimulation of the needle placed in the BSAA of the left ear showed a pattern that largely overlapped regions belonging to the pain matrix, as shown to be involved in previous somatic acupuncture studies but with local differences in the left amygdala, anterior cingulate cortex, and cerebellum. The differences in activation patterns between TAA and BSAA stimulation support the specificity of the two acupoints. Moreover, the peculiarity of the regions involved in BSAA stimulation compared to those involved in the pain matrix, is in accordance with the therapeutic indications of this acupoint that include head pain, dizziness and vertigo. Our results provide preliminary evidence on the specificity of two auricular acupoints; further research is warranted by means of fMRI both in healthy volunteers and in patients carrying neurological/psychiatric syndromes.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.
Resumo:
Schizophrenia, which results from an interaction between gene and environmental factors, is a psychiatric disorder characterized by reality distortion. The clinical symptoms, which are generally diagnosed in late adolescence or early adulthood, partly derive from altered brain connectivity especially in prefrontal cortex. Disruption of neuronal networks implies oligodendrocyte and myelin abnormalities in schizophrenia pathophysiology. The mechanisms of these impairments are still unclear. Converging evidences indicate a role of redox dysregulation, generated by an imbalance between pro-oxidants and antioxidant defense mechanisms, in the development of schizophrenia pathophysiology. In particular, genetic and biochemical data indicate impaired synthesis of glutathione, the main cellular antioxidant and redox regulator. As oligodendrocyte maturation is dependent on redox state, we evaluated whether abnormal redox control could contribute to oligodendrocyte and myelin impairments in schizophrenia. We found that glutathione in prefrontal cortex of early psychosis patients and control subjects positively correlated with white matter integrity. We then further explored the interplay between glutathione and myelin using a translational approach. Our data showed that in mice with genetically impaired glutathione synthesis, oligodendrocyte late maturation as well as myelination was delayed in the anterior cingulate cortex. Specifically, oligodendrocyte number and myelin levels were lowered at peripubertal age, coincident in time with the peak of myelin- related gene expression during normal brain development. These data suggest that early adolescence is a vulnerable developmental period during which an adequate redox control is required for oligodendrocyte maturation and active myelination process. Consistently, oxidative stress mediated by psychosocial stress also delayed myelination in peripubertal mice. At cellular levels, impaired glutathione synthesis altered oligodendrocyte development at several levels. Using oligodendrocyte progenitor cells cultures, our data showed that glutathione deficiency was associated with (i) cell cycle arrest and a reduction in oligodendrocyte proliferation, and (ii) an impairment in oligodendrocyte maturation. Abnormal oligodendrocyte proliferation was mediated by upregulation of Fyn kinase activity. Consistently, under oxidative stress conditions, we observed abnormal regulation of Fyn kinase in fibroblasts of patients deficient in glutathione synthesis. Together, our data support that a redox dysregulation due to glutathione deficit could underlie myelination impairment in schizophrenia, possibly mediated by dysregulated Fyn pathway. Better characterization of Fyn mechanisms would pave the way towards new drug targets. -- La schizophrénie est une maladie psychiatrique qui se définit par une distorsion de la perception de la réalité. Les symptômes cliniques sont généralement diagnostiqués durant l'adolescence ou au début de l'âge adulte et proviennent de troubles de la connectivité, principalement au niveau du cortex préfrontal. Les dysfonctionnements des réseaux neuronaux impliquent des anomalies au niveau des oligodendrocytes et de la myéline dans la pathophysiologie de la schizophrénie. Les mécanismes responsables des ces altérations restent encore mal compris. Dans le développement de la schizophrénie, des évidences mettent en avant un rôle de la dérégulation rédox, traduit par un déséquilibre entre facteurs pro-oxydants et défenses antioxydantes. Des données génétiques et biochimiques indiquent notamment un défaut de la synthèse du glutathion, le principal antioxydant et rédox régulateur des cellules. Etant donné que la maturation des oligodendrocytes est dépendante de l'état rédox, nous avons regardé si une dérégulation rédox contribue aux anomalies de la myéline dans le cadre de la schizophrénie. Dans le cortex préfrontal des sujets contrôles et des patients en phase précoce de psychose, nous avons montré que le glutathion était positivement associé à l'intégrité de matière blanche. Afin d'explorer plus en détail la relation entre le glutathion et la myéline, nous avons mené une étude translationnelle. Nos résultats ont montré que des souris ayant un déficit de la synthèse du glutathion présentaient un retard dans les processus de maturation des oligodendrocytes et de la myélinisation dans le cortex cingulaire antérieure. Plus précisément, le nombre d'oligodendrocytes et le taux de myéline étaient uniquement diminués durant la période péripubertaire. Cette même période correspond au pic de l'expression des gènes en lien avec la myéline. Ces données soulignent le fait que l'adolescence est une période du développement particulièrement sensible durant laquelle un contrôle adéquat de l'état rédox est nécessaire aux processus de maturation des oligodendrocytes et de myélinisation. Ceci est en accord avec la diminution de myéline observée suite à un stress oxydatif généré par un stress psychosocial. Au niveau cellulaire, un déficit du glutathion affecte le développement des oligodendrocytes à différents stades. En effet, dans des cultures de progéniteurs d'oligodendrocytes, nos résultats montrent qu'une réduction du taux de glutathion était associée à (i) un arrêt du cycle cellulaire ainsi qu'une diminution de la prolifération des oligodendrocytes, et à (ii) des dysfonctionnements de la maturation des oligodendrocytes. Par ailleurs, au niveau moléculaire, les perturbations de la prolifération étaient générées par une augmentation de l'activité de la kinase Fyn. Ceci est en accord avec la dérégulation de Fyn observée dans les fibroblastes de patients ayant une déficience en synthèse du glutathion en condition de stress oxydatif. Les résultats de cette thèse soulignent qu'une dérégulation rédox induite par un déficit en glutathion peut contribuer aux anomalies des oligodendrocytes et de la myéline via le dysfonctionnement des voies de signalisation Fyn. Une recherche plus avancée de l'implication de Fyn dans la maladie pourrait ouvrir la voie à de nouvelles cibles thérapeutiques.
Resumo:
OBJECTIVE: Previous studies reported that the severity of cognitive deficits in euthymic patients with bipolar disorder (BD) increases with the duration of illness and postulated that progressive neuronal loss or shrinkage and white matter changes may be at the origin of this phenomenon. To explore this issue, the authors performed a case-control study including detailed neuropsychological and magnetic resonance imaging analyses in 17 euthymic elderly patients with BD and 17 healthy individuals. METHODS: Neuropsychological evaluation concerned working memory, episodic memory, processing speed, and executive functions. Volumetric estimates of the amygdala, hippocampus, entorhinal cortex, and anterior cingulate cortex were obtained using both voxel-based and region of interest morphometric methods. Periventricular and deep white matter were assessed semiquantitatively. Differences in cognitive performances and structural data between BD and comparison groups were analyzed using paired t-test or analysis of variance. Wilcoxon test was used in the absence of normal distribution. RESULTS: Compared with healthy individuals, patients with BD obtained significantly lower performances in processing speed, working memory, and episodic memory but not in executive functions. Morphometric analyses did not show significant volumetric or white matter differences between the two groups. CONCLUSIONS: Our results revealed impairment in verbal memory, working memory, and processing speed in euthymic older adults with BD. These cognitive deficits are comparable both in terms of affected functions and size effects to those previously reported in younger cohorts with BD. Both this observation and the absence of structural brain abnormalities in our cohort do not support a progressively evolving neurotoxic effect in BD.
Resumo:
BACKGROUND: A hallmark of the pathophysiology of schizophrenia is a dysfunction of parvalbumin-expressing fast-spiking interneurons, which are essential for the coordination of neuronal synchrony during sensory and cognitive processing. Oxidative stress as observed in schizophrenia affects parvalbumin interneurons. However, it is unknown whether the deleterious effect of oxidative stress is particularly prevalent during specific developmental time windows. METHODS: We used mice with impaired synthesis of glutathione (Gclm knockout [KO] mice) to investigate the effect of redox dysregulation and additional insults applied at various periods of postnatal development on maturation and long-term integrity of parvalbumin interneurons in the anterior cingulate cortex. RESULTS: A redox dysregulation, as in Gclm KO mice, renders parvalbumin interneurons but not calbindin or calretinin interneurons vulnerable and prone to exhibit oxidative stress. A glutathione deficit delays maturation of parvalbumin interneurons, including their perineuronal net. Moreover, an additional oxidative challenge in preweaning or pubertal but not in young adult Gclm KO mice reduces the number of parvalbumin-immunoreactive interneurons. This effect persists into adulthood and can be prevented with the antioxidant N-acetylcysteine. CONCLUSIONS: In Gclm KO mice, early-life insults inducing oxidative stress are detrimental to immature parvalbumin interneurons and have long-term consequences. In analogy, individuals carrying genetic risks to redox dysregulation would be potentially vulnerable to early-life environmental insults, during the maturation of parvalbumin interneurons. Our data support the need to develop novel therapeutic approaches based on antioxidant and redox regulator compounds such as N-acetylcysteine, which could be used preventively in young at-risk subjects.
Resumo:
Objective: Converging evidence speak in favor of an abnormal susceptibility to oxidative stress in schizophrenia. A decreased level of glutathione (GSH), the principal non-protein antioxidant and redox regulator, was observed both in cerebrospinal-fluid and prefrontal cortex of schizophrenia patients (Do et al., 2000). Results: Schizophrenia patients have an abnormal GSH synthesis most likely of genetic origin: Two independent case-control studies showed a significant association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease-associated genotypes correlated with a decrease in GCLC protein expression, GCL activity and GSH content. Such a redox dysregulation during development could underlie the structural and functional anomalies in connectivity: In experimental models, GSH deficit induced anomalies similar to those observed in patients. (a) morphology: In animal models with GSH deficit during the development we observed in prefrontal cortex a decreased dendritic spines density in pyramidal cells and an abnormal development of parvalbumine (but not of calretinine) immunoreactive GABA interneurones in anterior cingulate cortex. (b) physiology: GSH depletion in hippocampal slices induces NMDA receptors hypofunction and an impairment of long term potentiation. In addition, GSH deficit affected the modulation of dopamine on NMDA-induced Ca 2+ response in cultured cortical neurons. While dopamine enhanced NMDA responses in control neurons, it depressed NMDA responses in GSH-depleted neurons. Antagonist of D2-, but not D1-receptors, prevented this depression, a mechanism contributing to the efficacy of antipsychotics. The redox sensitive ryanodine receptors and L-type calcium channels underlie these observations. (c) cognition: Developing rats with low [GSH] and high dopamine lead deficit in olfactory integration and in object recognition which appears earlier in males that females, in analogy to the delay of the psychosis onset between man and woman. Conclusion: These clinical and experimental evidence, combined with the favorable outcome of a clinical trial with N-Acetyl Cysteine, a GSH precursor, on both the negative symptoms (Berk et al., submitted) and the mismatch negativity in an auditory oddball paradigm supported the proposal that a GSH synthesis impairment of genetic origin represent, among other factors, one major risk factor in schizophrenia.
Resumo:
Left unilateral spatial neglect resulting from right brain damage is characterized by loss of awareness for stimuli in the contralesional side of space, despite intact visual pathways. We examined using fMRI whether patients with neglect are more likely to consciously detect in the neglected hemifield, emotionally negative complex scenes rather than visually similar neutral pictures and if so, what neural mechanisms mediate this effect. Photographs of emotional and neutral scenes taken from the IAPS were presented in a divided visual field paradigm. As expected, the detection rate for emotional stimuli presented in the neglected field was higher than for neutral ones. Successful detection of emotional scenes as opposed to neutral stimuli in the left visual field (LVF) produced activations in the parahippocampal and anterior cingulate areas in the right hemisphere. Detection of emotional stimuli presented in the intact right visual field (RVF) activated a distributed network of structures in the left hemisphere, including anterior and posterior cingulate cortex, insula, as well as visual striate and extrastriate areas. LVF-RVF contrasts for emotional stimuli revealed activations in right and left attention related prefrontal areas whereas RVF-LVF comparison showed activations in the posterior cingulate and extrastriate visual cortex in the left hemisphere. An additional analysis contrasting detected vs. undetected emotional LVF stimuli showed involvement of left anterior cingulate, right frontal and extrastriate areas. We hypothesize that beneficial role of emotion in overcoming neglect is achieved by activation of frontal and limbic lobe networks, which provide a privileged access of emotional stimuli to attention by top-down modulation of processing in the higher-order extrastriate visual areas. Our results point to the importance of top-down regulatory role of the frontal attentional systems, which might enhance visual activations and lead to greater salience of emotional stimuli for perceptual awareness.
Resumo:
Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.