997 resultados para Chukchi Sea


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 degrees N and 80.6 degrees N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1930s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high A OD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or anticyclonic conditions result in high atmospheric turbidity. The frequency of this weather type has declined significantly since the early 1980s in the Kara-Laptev sector, which partly explains the decline in summer AOD values. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C/m**2/d respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0°C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C/m**2/d, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction in sea ice along the SE Greenland coast during the last century has severely impacted ice-rafting to this area. In order to reconstruct ice-rafting and oceanographic conditions in the area of Denmark Strait during the last ~150 years, we conducted a multiproxy study on three short (20 cm) sediment cores from outer Kangerdlugssuaq Trough (~300 m water depth). The proxy-based data obtained have been compared with historical and instrumental data to gain a better understanding of the ice sheet-ocean interactions in the area. A robust chronology has been developed based on 210Pb and 137Cs measurements on core PO175GKC#9 (~66.2°N, 32°W) and expanded to the two adjacent cores based on correlations between calcite weight percent records. Our proxy records include sea-ice and phytoplankton biomarkers, and a variety of mineralogical determinations based on the <2 mm sediment fraction, including identification with quantitative x-ray diffraction, ice-rafted debris counts on the 63-150 µm sand fraction, and source identifications based on the composition of Fe oxides in the 45-250 µm fraction. A multivariate statistical analysis indicated significant correlations between our proxy records and historical data, especially with the mean annual temperature data from Stykkishólmur (Iceland) and the storis index (historical observations of sea-ice export via the East Greenland Current). In particular, the biological proxies (calcite weight percent, IP25, and total organic carbon %) showed significant linkage with the storis index. Our records show two distinct intervals in the recent history of the SE Greenland coast. The first of these (ad 1850-1910) shows predominantly perennial sea-ice conditions in the area, while the second (ad 1910-1990) shows more seasonally open water conditions.