107 resultados para Chrysomya


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Entomologia Forense é um ramo de investigação científica que aplica o estudo de insetos e outros artrópodes a procedimentos legais e está se desenvolvendo e chamando bastante atenção nos últimos anos. Diversos estudos vêm sendo realizados nesta área para que os profissionais responsáveis possuam o maior número de informações possível sobre os insetos utilizados para estes fins, permitindo-lhes assim fazer melhores análises nos casos litigiosos envolvendo a descoberta da causa até a estimativa de tempo do intervalo pós-morte (I.P.M.) em um cadáver humano. Dentro deste ramo de estudo, a ordem Diptera apresenta certo destaque por apresentar diversos insetos com hábitos necrófagos, como por exemplo a família Calliphoridae, que se destaca pela grande distribuição e número de registros da presença de seus representantes nos tecidos de corpos animais no início da decomposição. A espécie Chrysomya megacephala (Fabricius), pertencente a esta família, tendo sido introduzida acidentalmente aqui no Brasil alguns anos atrás, possui uma importância médico-sanitária como veiculadora de patógenos, eventual causadora de miíases e, pelo fato de colocar seus ovos sobre tecidos de animais em decomposição, é uma importante espécie utilizada em estudos forenses. Baseando-se em trabalhos já realizados, sabe-se que a presença de determinadas substâncias químicas no substrato alimentar das larvas destas moscas pode alterar seu desenvolvimento, e sabendo quais seriam as mudanças provocadas por uma dessas substâncias, a análise do cadáver se tornaria mais completa e confiável durante a estimativa do I.P.M. A área responsável pelo estudo da interação entre substâncias químicas e os seus efeitos nos insetos é chamada de Entomotoxicologia, que também permite detectar traços de drogas lícitas ou não no trato digestivo de insetos necrófagos... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Entomologia Forense é a ciência que aplica o estudo dos insetos, dentre outros artrópodes, a procedimentos legais, estando subdividida em três sub-áreas principais: Entomologia Urbana, Entomologia de Produtos Estocados e Entomologia Médico-Legal ou Médico-Criminal. A fauna entomológica cadavérica no Brasil apresenta uma ampla diversidade de espécies que se sucedem na carcaça, pois o processo de decomposição oferece condições ideais principalmente ao desenvolvimento dos dípteros, dentre outros insetos. A sucessão ecológica em carcaças ocorre em ondas de colonização, também denominada de sucessão ecológica de colonização de carcaças. A primeira onda, que é a mais importante para o presente estudo, inclui principalmente as moscas-varejeiras; dentre elas, merece destaque a espécie Chrysomya megacephala (Fabricius), um díptero da família Calliphoridae, que utiliza a carcaça para oviposição ou para alimentação dos adultos. Dos ovos eclodem as larvas, que se alimentam dos tecidos em decomposição, se desenvolvem e empupam no solo, nos arredores do cadáver, sendo assim possível estimar, a partir de evidências entomológicas, o tempo decorrido desde a morte até a descoberta de cadáveres humanos, ou seja, o intervalo pós-morte ou IPM, além de permitir obter informações do local onde possivelmente o crime tenha ocorrido, causa da morte, entre outros aspectos. Alguns trabalhos têm demonstrado que vários fatores podem afetar a determinação do IPM, tornando a investigação criminal mais difícil e, quando não forem levados em consideração, conduzem a erros no cálculo do IPM. Dispersão larval pós-alimentar, competição, predação, parasitismo, condições ambientais, e a presença de toxinas/drogas no corpo devem ser analisados em conjunto, de modo que erros na estimativa do IPM sejam minimizados tanto quanto possível. Deste modo, testes preliminares utilizando dietas artificiais em laboratório são...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blowflies Chrysomya chloropyga (Wiedemann,1818) and Chrysomya putoria (Wiedemann, 1830) (Diptera: Calliphoridae) of veterinary and medical importance are taxonomically revised and formally reestablished as two different species. Characters in the adult morphology by which they can be distinguished, including characters in the genitalia, are described. The form with a darkened anterior margin of the wing, 'f. tacniata Bigot' sensu Zumpt 1956, is treated as a variant of C. putoria. In order to preserve stability of nomenclature, lectotypes are designated for both nominal species, fixing their identity in accordance with current usage. Somomyia cuprinitens Rondani, 1873, and Somomyia taeniata Bigot, 1877, (= C. chloropyga 'f. taeniata Bigot' of Zumpt) are considered new synonyms of C. putoria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the Calliphoridae (blowflies) are significant for medical and veterinary management, due to the ability of some species to consume living flesh as larvae, and for forensic investigations due to the ability of others to develop in corpses. Due to the difficulty of accurately identifying larval blowflies to species there is a need for DNA-based diagnostics for this family, however the widely used DNA-barcoding marker, cox1, has been shown to fail for several groups within this family. Additionally, many phylogenetic relationships within the Calliphoridae are still unresolved, particularly deeper level relationships. Sequencing whole mt genomes has been demonstrated both as an effective method for identifying the most informative diagnostic markers and for resolving phylogenetic relationships. Twenty-seven complete, or nearly so, mt genomes were sequenced representing 13 species, seven genera and four calliphorid subfamilies and a member of the related family Tachinidae. PCR and sequencing primers developed for sequencing one calliphorid species could be reused to sequence related species within the same superfamily with success rates ranging from 61% to 100%, demonstrating the speed and efficiency with which an mt genome dataset can be assembled. Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117–200% more variable than the markers which have been used previously in calliphorids. Phylogenetic analysis of whole mt genome sequences resulted in much stronger support for family and subfamily-level relationships. The Calliphoridae are polyphyletic, with the Polleninae more closely related to the Tachinidae, and the Sarcophagidae are the sister group of the remaining calliphorids. Within the Calliphoridae, there was strong support for the monophyly of the Chrysomyinae and Luciliinae and for the sister-grouping of Luciliinae with Calliphorinae. Relationships within Chrysomya were not well resolved. Whole mt genome data, supported the previously demonstrated paraphyly of Lucilia cuprina with respect to L. sericata and allowed us to conclude that it is due to hybrid introgression prior to the last common ancestor of modern sericata populations, rather than due to recent hybridisation, nuclear pseudogenes or incomplete lineage sorting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numbers of Lucilia cuprina (Australian sheep blowfly), Chrysomya spp., and Calliphora spp. blowflies caught on sticky traps baited with various synthetic attractants or a standard liver/sodium sulfide attractant in western Queensland were recorded. Numbers of each genus collected were influenced by the composition of the chemical attractants. Attractant mixtures based on 2-mercaptoethanol, indole, butanoic/pentanoic acid, and a sodium sulfide solution gave 5- to 20-fold higher L. cuprina catches than the liver standard. These blends attracted similar numbers of Chrysomya spp. (0.85–2.7× ) and fewer Calliphora spp. (0.02–0.2× ) compared to the liver standard. These synthetic attractants were more effective and selective for L. cuprina than the standard liver/sodium sulfide attractant, and they can be packaged in controlled-release dispensers to generate constant, prolonged release of the attractant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian sheep blowfly, Lucilia cuprina initiates more than 85% of fly strikes on sheep in Australia with an estimated average annual cost of A$280 million to the Australian wool industry. LuciTrap® is a commercially available, selective trap for L. cuprina consisting of a plastic bucket with multiple fly entry cones and a synthetic attractant. The impact of LuciTrap on populations of L. cuprina on sheep properties in five Australian states was evaluated by comparing L. cuprina populations on paired properties with and without LuciTraps over seasons when significant fly populations could be expected. Twenty-four comparisons (trials) were conducted over four years. During times of ‘higher fly density’ (when the 48 h geometric mean of trap catches on the control property was greater than five L. cuprina), the overall geometric mean trap catches for control and trapped properties differed significantly (P<0.001) with mean trap catches of 19.4 and 7.74 L. cuprina respectively. The selectivity of the LuciTrap was confirmed with 59% of all trapped flies being L. cuprina. Chrysomya spp. and Calliphora spp. constituted 9.3% and 1.1% of the catches with a variety of other flies (mainly Sarcophagidae and Muscidae) providing the remainder (31%). L. sericata was only trapped in Tasmania and made up 7.7% of the Lucilia spp. catch in this State. Seventy-two percent of the trapped L. cuprina were female. The deployment of LuciTrap on sheep properties at one trap per 100 sheep from the beginning of the anticipated fly season suppressed the populations of L. cuprina by 60% compared to matched control properties. The LuciTrap is a selective and easy to use fly trap and constitutes an effective, non-insecticidal tool for use in integrated management programs for L. cuprina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Screwworms are obligate, invasive parasites of warm-blooded animals. The female flies lay batches of eggs at the edge of wounds or other lesions. These eggs hatch to larvae or screw-worms which feed on affected animals for 6-7 days, burrowing deeply into subcutaneous tissues and causing severe trauma to animals, production loss and potentially death. Susceptible sites include wounds resulting from management practices such as castration, de-horning and ear tagging and lesions caused by the activities of other parasites such as buffalo flies and ticks. The navels of the new born and the vulval region of their mothers following parturition are highly susceptible and body orifices such as nose and ears are also frequent targets for ovipositing screwworm flies. The Old World screw-worm, Chrysomya bezziana (OWS) is considered one of the most serious exotic insect pest threatening Australia's livestock industries and is endemic in a number of our closest neighbouring countries. New World screwworm (NWS), Cochliomyia hominivorax, endemic to South America, has also entered Australia on at least 2 occasions. Many tropical and subtropical areas of Australia are suitable for the establishment of OWS and the potential range is expected to increase with climate change. The Australian screwworm preparedness strategy indicates a program of containment with chemical treatments followed by eradication of OWS using sterile male release and parasiticides. However, there is no longer an operational OWS sterile insect screw-worm facility anywhere in the world and establishing a large scale production facility would most optimistically take at least 2 years. In the interim, containment would be almost totally dependent on the availability of effective chemical controls. A review of chemical formulations available for potential use against OWS in Australia found that currently only one chemical, ivermectin administered by subcutaneous injection (s.c.) is registered for use against OWS and that many of the chemicals previously shown to be effective against OWS were no longer registered for animal use in Australia.18 From this review a number of Australian-registered chemicals were recommended as a priority for testing against OWS. The Australian Pesticides and Veterinary Medicines Authority (APVMA) can issue an emergency use permit for use of pesticides if they are registered in Australia for other animal uses and shown to be effective against OWS. This project tested the therapeutic and prophylactic efficacy of chemicals with potential for use in the treatment and control of OWS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modem production systems accommodate broody hens in high densities, leading to the accumulation of excrement under the cages. This substrate is excellent for the development of sinantropic flies. Thus, the accomplishment of surveys in these places becomes essential, in order to plan better strategies of control. The present work aimed at studying the entornofauna and the seasonality of the species of dipterous present in the Crisdan poultry house located in the Municipality of Sao Joao da Boa Vista, the State of Sao Paulo, Brazil. In the period of January of 2001 to December of 2002, 1,012,595 flies were captured using the ""jug-trap"". The species were identified: Drosophi-la repleta (Wollaston, 1858), Musca domestica (Linnaeus, 1758), Ophyra spp., Hennetria illucens (Linnaeus, 1758), Fannia canicularis (Linnaeus, 1761), Chrysomya megacephala (Fabricius, 1794), and Sepsidae. More frequently D. repleta and M. domestica had added 99.47% of the dipterous. Increased rainfall and the collection months influenced the sampling of dipterous (P < 0.05). Drosophila repleta was the most abundant species, representing 91% of all captured flies. However, this diptera did not develop at the surveyed site since immatures were not captured therein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modem production systems accommodate broody hens in high densities, leading to the accumulation of excrement under the cages. This substrate is excellent for the development of sinantropic flies. Thus, the accomplishment of surveys in these places becomes essential, in order to plan better strategies of control. The present work aimed at studying the entornofauna and the seasonality of the species of dipterous present in the Crisdan poultry house located in the Municipality of Sao Joao da Boa Vista, the State of São Paulo, Brazil. In the period of January of 2001 to December of 2002, 1,012,595 flies were captured using the "jug-trap". The species were identified: Drosophi-la repleta (Wollaston, 1858), Musca domestica (Linnaeus, 1758), Ophyra spp., Hennetria illucens (Linnaeus, 1758), Fannia canicularis (Linnaeus, 1761), Chrysomya megacephala (Fabricius, 1794), and Sepsidae. More frequently D. repleta and M. domestica had added 99.47% of the dipterous. Increased rainfall and the collection months influenced the sampling of dipterous (P < 0.05). Drosophila repleta was the most abundant species, representing 91% of all captured flies. However, this diptera did not develop at the surveyed site since immatures were not captured therein.