997 resultados para Chromosomal Evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large chromosomal rearrangements are common in natural populations and thought to be involved in speciation events. In this project, we used experimental evolution to determine how the speed of evolution and the type of accumulated mutations depend on the ancestral chromosomal structure and genotype. We utilized two Wild Type strains and a set of genetically engineered Schizosaccharomyces pombe strains, different solely in the presence of a certain type of chromosomal variant (inversions or translocations), along with respective controls. Previous research has shown that these chromosomal variants have different fitness levels in several environments, probably due to changes in the gene expression along the genome. These strains were propagated in the laboratory at very low population sizes, in which we expect natural selection to be less efficient at purging deleterious mutations. We then measured these strains’ changes in fitness throughout this accumulation of deleterious mutations, comparing the evolutionary trajectories in the different rearrangements to understand if the chromosomal structure affected the speed of evolution. We also tested these mutations for possible epistatic effects and estimated their parameters: the number of arising deleterious mutations per generation (Ud) and each one’s mean effect (sd).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most hybrid zones have existed for hundreds or thousands of years but have generally been observed for only a short time period. Studies extending over periods long enough to track evolutionary changes in the zones or assess the ultimate outcome of hybridization are scarce. Here, we describe the evolution over time of the level of genetic isolation between two karyotypically different species of shrews (Sorex araneus and Sorex antinorii) at a hybrid zone located in the Swiss Alps. We first evaluated hybrid zone movement by contrasting patterns of gene flow and changes in cline parameters (centre and width) using 24 microsatellite loci, between two periods separated by 10 years apart. Additionally, we tested the role of chromosomal rearrangements on gene flow by analysing microsatellite loci located on both rearranged and common chromosomes to both species. We did not detect any movement of the hybrid zone during the period analysed, suggesting that the zone is a typical tension zone. However, the gene flow was significantly lower among the rearranged than the common chromosomes for the second period, whereas the difference was only marginally significant for the first period. This further supports the role of chromosomal rearrangements on gene flow between these taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SummarySimultaneous detection of aneuploidies for chromosomes 4, 6,10 and 17 by automated four color l-FISH in high hyperdiploid acute lymphoblastic leukemia: diagnostic assessment, clonal heterogeneity and chromosomal instability in adultsAnna Talamo BlandinService de Génétique Médicale, Unité de Cytogénétique du Cancer, CHUVAcute lymphoblastic leukemia (ALL) is a malignant hemopathy characterized by the accumulation of the immature lymphoid cells in the bone marrow and, most often, in the peripheral blood. ALL is a heterogeneous disease with distinct biological and prognostic entities. At diagnosis, cytogenetic and molecular findings constitute important and independent prognostic factors. High hyperdiploidy with 51-67 chromosomes (HeH), one of the largest cytogenetic subsets of ALL, in childhood particularly, is generally associated with a relatively favorable outcome. Chromosome gain is nonrandom, extracopies of some chromosome occurring more frequently than those of others. Concurrent presence of trisomy for chromosomes 4, 10 and 17 confers an especially good prognosis. The first aim of our work was to develop an automated four color interphase fluorescence in situ hybridization (l-FISH) methodology and to assess its ability to detect concurrent aneuploidies 4, 6, 10 and 17 in 10 ALL patients. Various combinations of aneuploidies were identified. All clones detected by conventional cytogenetics were also observed by l-FISH. However, in all patients, l-FISH revealed numerous additional abnormal clones, leading to a high level of clonal heterogeneity. Our second aim has been to investigate the nature and origin of this clonal heterogeneity and to test for the presence of chromosome instability (CIN) in HeH ALL at initial presentation. Ten HeH ALL and 10 non-HeH ALL patients were analysed by four colour l-FISH and numerical CIN values were determined for all four chromosomes together and for each chromosome and patient group, an original approach in ALL. CIN values in HeH ALL proved to be much higher than#iose in non-HeH ALL, suggesting that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by l-FISH. Our third aim has been to study the evolution of these cytogenetic features during the course of the disease in 10 HeH ALL patients. Clonal heterogeneity was also observed again during disease progression, particularly at relapse. Clones detected at initial presentation generally reappeared in relapse, in most cases with newly generated ones. A significant correlation between the number of abnormal clones and CIN suggested that the higher the instability, the larger the number of abnormal clones. Whereas clonal heterogeneity and its evolution most probably result from underlying chromosome instability, operating processes remain conjectural.RésuméLa leucémie lymphoblastique aiguë (LLA) est une hémopathie maligne qui résulte de l'accumulationde cellules lymphoïdes immatures dans la moelle osseuse, et, le plus souvent, dans le sangpériphérique également. La LLA est une affection hétérogène au sein de laquelle se distinguentplusieurs entités biologiques et pronostiques. Les données cytogénétiques et moléculaires font partieintégrante du diagnostic et jouent un rôle essentiel dans l'évaluation du pronostic. L'hyperdiploïdieélevée à 51-­67 chromosomes (HeH), relativement fréquente, en particulier chez l'enfant, s'associe àun pronostic favorable. Le gain de chromosomes ne relève pas du hasard, certains chromosomesétant plus fréquemment impliqués que d'autres. La présence simultanée des trisomies 4, 6, et 17s'associe à un pronostic particulièrement bon. Le premier but du travail a été de développer uneméthode d'analyse automatique par hybridation in situ fluorescente interphasique (I-­FISH) à 4couleurs et de tester sa capacité à identifier la présence simultanée d'aneuploïdies 4, 6, 10 et 17 dans10 cas de LLA. Différentes combinaisons d'aneuploïdies ont été identifiées. Tous les clones détectéspar cytogénétique conventionnelle l'ont été par I-­FISH. Or, chez tous les patients, l'I-­FISH a révélé denombreux clones anormaux additionnels générant un degré élevé d'hétérogénéité clonale. Notredeuxième but a été d'investiguer la nature et l'origine de cette hétérogénéité et de tester la présenced'instabilité chromosomique (CIN) chez les patients avec une LLA HeH en presentation initiale. DixLLA HeH et 10 LLA non-­HeH ont été analysées par I-­FISH et les valeurs de CIN numérique ont étédéterminées pour les 4 chromosomes ensemble et pour chaque chromosome et groupe de patients,approche originale dans la LLA. Ces valeurs étant beaucoup plus élevées dans la LLA HeH que dansla LLA non-­HeH, elles favorisent l'hypothèse selon laquelle la CIN serait à l'origine de l'hétérogénéitéclonale révélée par I-­FISH. Le troisième but de notre travail a été d'étudier l'évolution de cescaractéristiques cytogénétiques au cours de la maladie dans 10 cas de LLA HeH. L'hétérogénéitéclonale a été retrouvée lors de la progression de la maladie, en particulier en rechute, où les clonesanormaux détectés en présentation initiale réapparaissent, généralement accompagnés de clonesnouveaux. La corrélation existant entre nombre de clones anormaux et valeurs de CIN suggère queplus l'instabilité est élevée, plus le nombre de clones anormaux est grand. Bien que l'hétérogénéitéclonale et son évolution résultent très probablement de l'instabilité chromosomique, les processus àl'oeuvre ne sont pas entièrement élucidés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robertsonian (Rb) fusions received large theoretical support for their role in speciation, but empirical evidence is often lacking. Here, we address the role of Rb rearrangements on the genetic differentiation of the karyotypically diversified group of shrews, Sorex araneus. We compared genetic structure between 'rearranged' and 'common' chromosomes in pairwise comparisons of five karyotypic taxa of the group. Considering all possible comparisons, we found a significantly greater differentiation at rearranged chromosomes, supporting the role of chromosomal rearrangements in the general genetic diversification of this group. Intertaxa structure and distance were larger across rearranged chromosomes for most of the comparisons, although these differences were not significant. This last result could be explained by the large variance observed among microsatellite-based estimates. The differences observed among the pairs of taxa analysed support the role of both the hybrid karyotypic complexity and the level of evolutionary divergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RÉSUMÉ : Le sexe des individus peut être déterminé par l'environnement ou la génétique. Lorsque la détermination du sexe est génétique, il y a dans le génome, la présence de chromosomes spécifiques qui détermineront le sexe. Dans cette thèse, j'ai étudié l'évolution des chromosomes sexuels et dans quel contexte des marqueurs sur ces chromosomes peuvent être utilisés. Pour explorer la formation du chromosome Y, nous avons étudié les caractéristiques des chromosomes sexuels chez la rainette verte, Hyla arborea. Dans un premier temps, nous avons utilisé un marqueur situé sur les chromosomes sexuels X et Y chez plusieurs espèces appartenant au groupe de la rainette verte. Cela nous a permis de révéler chez toutes ces espèces une hétérogamétie mâle. Dans un deuxième temps, nous avons tiré profit de deux autres marqueurs situés sur les chromosomes sexuels pour montrer que la recombinaison est supprimée chez les mâles mais pas chez les femelles. Pour expliquer la réduction de la variabilité sur le chromosome Y, il n'est pas nécessaire d'invoquer le balayage sélectif ou la sélection d'arrière-plan : le nombre de copies plus petit du chromosome Y dans le génome et l'absence de recombinaison suffisent à l'expliquer. Nous avons également analysé plus en détail la suppression de la recombinaison chez les mâles de H. arborea. Les modèles classiques de l'évolution des chromosomes sexuels supposent que la taille de la région non-recombinante augmente progressivement pendant l'évolution du chromosome Y, due à l'accumulation de changements structuraux. Dans cette étude, nous montrons un modèle différent, à savoir que la recombinaison est supprimée ou diminuée non seulement sur les chromosomes sexuels mais aussi sur les autosomes chez les mâles, dû à l'action de modificateurs généraux. En utilisant des marqueurs localisés sur le chromosome Y, ainsi que sur l'ADN mitochondrial et le chromosome X, nous avons étudié l'histoire évolutive de la musaraigne musette, Crocidura russula. Cette étude illustre que les analyses génétiques avec plusieurs types de marqueurs génétiques peuvent faciliter l'interprétation de l'histoire évolutive des espèces, mais que l'utilisation des marqueurs sur les chromosomes X et Y pour des études phylogéographiques est limitée par le peu de polymorphisme observé sur ces deux types de marqueurs. Le même jeu de données combiné avec des simulations a été employé pour comprendre les facteurs responsables de la faible variabilité sur le chromosome Y qui peut être expliqué, dans notre étude, par la démographie et les traits d'histoire de vie de C. russula. SUMMARY The sex of an individual is determined either by its environment or its genetics. Genetic sex determination relies on the presence of specific chromosomes that will determine the sex of their bearer. In this thesis, I studied the evolution of the sex chromosomes and the context in which markers on this type of chromosomes can be used. To explore the evolution of a Y chromosome, we studied the nascent sex chromosomes in the European tree frog Hyla arborea. First; we amplified a sex specific marker in several related species of European tree frog and found a homogeneous pattern of male heterogamety. Secondly, we used two additional sex-specific markers to show that recombination is suppressed in males but not in females. There is, therefore, no need to invoke background selection or selective sweeps to explain the reduced genetic variability on the Y chromosome, because the lower number of copies of the Y chromosomes per breeding pair and the absence of recombination are sufficient. To further analyze the suppression of recombination in male European. tree frogs, we constructed a microsatellite linkage map for this species. Classical models of sex-chromosome evolution assume that the non-recombining region expands progressively during the long-term evolution of the Y chromosome, owing to the accumulation of structural changes. Here we show a strikingly different pattern: recombination is suppressed or depressed both on sex chromosomes and autosomes in the heterogametic sex, presumably due to the action of general modifiers. We investigated the evolutionary history of the greater white-toothed shrew, Crocidura russula, using markers on both sex chromosomes and mtDNA. This study illustrates that multilocus genetic analyses facilitates the interpretation of a species' evolutionary history. It also demonstrates that phylogeographic inferences from X and Y chromosomal markers are restricted by the low levels of observed polymorphism. Combining this genetic study with simulations, we determined that the demography and the life-history traits of this species can alone be responsible for the low Y diversity. In conclusion, this thesis shows that sex chromosomes, in combination with autosomes or mtDNA, are necessary to understand the evolution of sex chromosomes and to precisely infer the population history of a species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure.Results: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae.Conclusion: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.Results: We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenariothat reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to aProtoHox cluster was involved in a segmental tandem duplication event that generated an arrayof all Hox-like genes, referred to as the `coupled¿ cluster. A chromosomal breakage within thiscluster explains the current composition of the extended Hox cluster (with Evx, Hox and Moxgenes) and the ParaHox cluster.Conclusions: Most studies dealing with the origin and evolution of Hox and ParaHox clustershave not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and theavailable linkage data in mammalian genomes support an evolutionary scenario in which anancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of alarge genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plusthe cluster-neighbors Evx and Mox. The large `coupled¿ Hox-like cluster EvxHox/MoxParaHox wassubsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating theParaHox cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequencing of pools of individuals (Pool-Seq) represents a reliable and cost-effective approach for estimating genome-wide SNP and transposable element insertion frequencies. However, Pool-Seq does not provide direct information on haplotypes so that, for example, obtaining inversion frequencies has not been possible until now. Here, we have developed a new set of diagnostic marker SNPs for seven cosmopolitan inversions in Drosophila melanogaster that can be used to infer inversion frequencies from Pool-Seq data. We applied our novel marker set to Pool-Seq data from an experimental evolution study and from North American and Australian latitudinal clines. In the experimental evolution data, we find evidence that positive selection has driven the frequencies of In(3R)C and In(3R)Mo to increase over time. In the clinal data, we confirm the existence of frequency clines for In(2L)t, In(3L)P and In(3R)Payne in both North America and Australia and detect a previously unknown latitudinal cline for In(3R)Mo in North America. The inversion markers developed here provide a versatile and robust tool for characterizing inversion frequencies and their dynamics in Pool-Seq data from diverse D. melanogaster populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The species and races of the shrews of the Sorex araneus group exhibit a broad range of chromosomal polymorphisms. European taxa of this group are parapatric and form contact or hybrid zones that span an extraordinary variety of situations, ranging from absolute genetic isolation to almost free gene flow. This variety seems to depend for a large part on the chromosome composition of populations, which are primarily differentiated by various Robertsonian fusions of a subset of acrocentric chromosomes. Previous studies suggested that chromosomal rearrangements play a causative role in the speciation process. In such models, gene flow should be more restricted for markers on chromosomes involved in rearrangements than on chromosomes common in both parent species. In the present study, we address the possibility of such differential gene flow in the context of two genetically very similar but karyotypically different hybrid zones between species of the S. araneus group using microsatellite loci mapped to the chromosome arm level. Interspecific genetic structure across rearranged chromosomes was in general larger than across common chromosomes. However, the difference between the two classes of chromosomes was only significant in the hybrid zone where the complexity of hybrids is expected to be larger. These differences did not distinguish populations within species. Therefore, the rearranged chromosomes appear to affect the reproductive barrier between karyotypic species, although the strength of this effect depends on the complexity of the hybrids produced.