981 resultados para Chromium-Oxide Films
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
To find sustainable solutions for the production of energy, it is necessary to create photovoltaic technologies that make every photon count. To pursue this necessity, in the present work photodetectors of zinc oxide embedded with nano-structured materials, that significantly raise the conversion of solar energy to electric energy, were developed. The novelty of this work is on the development of processing methodologies in which all steps are in solution: quantum dots synthesis, passivation of their surface and sol-gel deposition. The quantum dot solutions with different capping agents were characterized by UVvisible absorption spectroscopy, spectrofluorimetry, dynamic light scattering and transmission electron microscopy. The obtained quantum dots have dimensions between 2 and 3nm. These particles were suspended in zinc acetate solutions and used to produce doped zinc oxide films with embedded quantum dots, whose electric response was tested. The produced nano-structured zinc oxide materials have a superior performance than the bulk, in terms of the produced photo-current. This indicates that an intermediate band material should have been produced that acts as a photovoltaic medium for solar cells. The results are currently being compiled in a scientific article, that is being prepared for possible submission to Energy and Environmental Science or Nanoscale journals.
Resumo:
Working with low voltage microscope (R.C.A., EMC-2, of 30KV.) the authors verified that parlodion and Formvar films are quickly destroyed by intense heating under the electron beam. They have tried to employ oxide films, as Al2O3 and SiO, more resistant to heat. Al2O3 films are prepared by anodic oxidation of thin aluminium sheets, under 8 to 10 volts in a 3% ammonium citrate solution and subsequent aluminium dissolution in a O.25% HgCl2 solution. These films are very suitable when prepared with highly pure aluminium of extremely homogeneous surface. Best results were obtained with SiO films, evaporated in high vacuum over Parlodion films mounted on metallic grids. Employing 1 or 1.5 mg of SiOm highly homogeneous and resistant films are obtained, having little inferior transparence than the Parlodion ones. Pure SiO films (1.5 mg) are obtained by elimination of the Parlodion under slow heating until 250°C; they are greatly transparent but little resistant to water, thus beeing indicated in dry preparations. For particles which deposite in a chain-like form around thin fibers, the authors employ the mounting on Parlodion fibers, obtained by heating Parlodion films on microscope grids about 190°C.
Resumo:
The goal of this trial was to estimate the total dry matter (TDMI) and daily pasture dry matter intakes (PDMI) by lactating crossbred Holstein - Zebu cows grazing elephant grass (Pennisetum purpureum Schum.) paddocks submitted to different rest periods. Three groups of 24 cows were used during two years. The paddocks were grazed during three days at the stocking rate of 4.5 cows/ha. Treatments consisted of resting periods of 30 days without concentrate and resting periods of 30, 37.5 and 45 days with 2 kg/cow/day of 20.6% crude protein concentrate. From July to October, pasture was supplemented with chopped sugarcane plus 1% urea. Total daily dry matter intake was estimated using the extrusa in vitro dry matter digestibility and the fecal output with chromium oxide. Regardless of the treatment the estimated average TDMI was 2.7, 2.9 and 2.9±0.03% and the mean PDMI was 1.9, 2.1 and 2.1±0.03% of body weight in the first, second and third grazing day, respectively (P<0.05). Only during the summer pasture quality was the same whichever the grazing day. Sugarcane effectively replaced grazing pasture, mainly in the first day when pasture dry matter intake was lowest.
Resumo:
The objective of this work was to determine the nutritional value of different protein sources for "dourado" (Salminus brasiliensis). Thirty juveniles per group (33.51±1.4 g) were hand fed on a reference diet (70%) added of tested ingredients (30%) and chromium oxide III (0.1%). Apparent digestibility coefficients of the gross energy (ADC GE), crude protein (ADC CP) and amino acids of the tested ingredients were evaluated. Corn gluten meal yielded the best results for ADC GE and ADC CP (95.7 and 96.9%, respectively) amongst plant ingredients. Spray-dried blood meal yielded the best values of ADC GE and ADC CP amongst animal ingredients (94.1 and 96.3%, respectively). Wheat bran yielded poorest ADCs coefficients (77 for ADC GE and 88.2% for ADC CP).
Resumo:
In this paper some studies concerning the electroreduction of Mo(VI) in sulphuric acid solutions are described. We have shown that at suitable experimental conditions very stable molybdenum oxide films can be electrochemically deposited at glassy carbon electrodes, the reduction of bromate occurring at less negative potentials on the modified surface. Coulometric experiments have shown that bromide is not the only product of the catalytic bromate reduction by the molybdenum film and species like BrO2 may have part in this process. Based on chronoamperometric curves recorded at -0.60 V, analytical curves have been obtained for the reduction of bromate in the 0.1 - 0.8 mM range, a limit of detection of 20 µM for bromate being determined.
Resumo:
The aim of this work is to study the electrochromism and the reaction kinetics of lithium electrointercalation in anodic niobium oxide films. The oxide grown in an acid environment by application of an alternating potential shows interference colour (iridescence) and when reduced in lithium perclorate/PC solution, the intercalation of Li+ ions and electrons causes a reversible colour change (electrochromism), characterized here by electrochemical and optical measurements. A model where the reaction kinetics is dominated by diffusion of ionic pairs (Li+, e-) in the oxide film permitted the reproduction of current and absorbance temporal dependence, confirming the relationship between the electrochromic and electrochemical reactions. From the results obtained, a relation was established where the colour change is associated to the reduction of Nb+5 to Nb+4 ions with simultaneous cations injection.
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
Tungsten oxide thin films with three different compositions were deposited by reactive sputtering in an oxygen-argon plasma. In a system composed of a home made photochemical reactor coupled with an optic fiber spectrophotometer, the photochromic effect was studied in these oxide films as function of UV irradiation time, in ethanol, methanol and formaldehyde atmospheres. It was observed that the photochromic efficiency depends on the vapor chemical nature where the film is irradiated as well as the film composition. Kinetic analysis suggest that two kinds of optical absorption centers should respond by the photochromic effect in these films, one generated at film surface and other inside it, which one presenting a different time constant.
Resumo:
The physical and electrochemical properties of Ti-SnO2/Sb electrodes obtained by the thermal decomposition of solutions of the precursor salts SnCl2×2H2O/SbCl3 and SnSO4/Sb2(SO4)3 were investigated. The reversibility of the cyclic voltammetric response of the Fe(CN)6(4-)/Fe(CN)6(3-) redox couple was assessed using the obtained electrodes. Their catalytic activity for the oxygen-evolving reaction and maximum capacity for electronic transfer were also evaluated by potential and current linear scans in 0.5 mol L-1 H2SO4. Additionally, scanning electron microscopy analyses allowed the visualization of the morphology of the oxide films obtained. The best results were presented by the electrodes obtained from the chloride salt precursors.
Resumo:
Surface and electrochemical properties of the dimensionally stable anode Ti/(Ru0.3Ti0.7)O2 were studied as a function of the annealing temperature using different conditions in order to perform the cooling process of the oxide films (conventional thermal shock and the slow cooling processes). It was found that surface and electrochemical properties for the oxygen evolution reaction are both affected through the cooling process, being the electrode prepared at 400 ºC using the slow cooling process the less susceptible to wear. The Tafel slope obtained in the high overpotential domain was analysed in light of the apparent charge transfer coefficient.
Resumo:
Inhibition of global warming has become one of the major goals for the coming decades. A key strategy is to replace fossil fuels with more sustainable fuels, which has generated growing interest in the use of waste-derived fuels and of biomass fuels. However, from the chemical point of view, biomass is an inhomogeneous fuel, usually with a high concentration of water and considerable amounts of potassium and chlorine, all of which are known to affect the durability of superheater tubes. To slow down or reduce corrosion, power plants using biomass as fuel have been forced to operate at lower steam temperatures as compared to fossil fuel power plants. This reduces power production efficiency: every 10°C rise in the steam temperature results in an approximate increase of 2% in power production efficiency. More efficient ways to prevent corrosion are needed so that power plants using biomass and waste-derived fuels can operate at higher steam temperatures. The aim of this work was to shed more light on the alkali-induced corrosion of superheater steels at elevated temperatures, focusing on potassium chloride, the alkali salt most frequently encountered in biomass combustion, and on potassium carbonate, another potassium salt occasionally found in fly ash. The mechanisms of the reactions between various corrosive compounds and steels were investigated. Based on the results, the potassium-induced accelerated oxidation of chromia protected steels appears to occur in two consecutive stages. In the first, the protective chromium oxide layer is destroyed through a reaction with potassium leading to the formation of intermediates such as potassium chromate (K2CrO4) and depleting the chromium in the protective oxide layer. As the chromium is depleted, chromium from the bulk steel diffuses into the oxide layer to replenish it. In this stage, the ability of the material to withstand corrosion depends on the chromium content (which affects how long it takes the chromium in the oxide layer to be depleted) and on external factors such as temperature (which affects how fast the chromium diffuses into the protective oxide from the bulk steel). For accelerated oxidation to continue, the presence of chloride appears to be essential.
Resumo:
Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.
Resumo:
The objective of the present work is to improve the textural and structural properties of cerium oxide by the incorporation of transition metals as well as sulphate ions. We have incorporated tungsten, molybdenum and chromium oxide into pure as well as sulphated cerium oxide and the catalytic systems thus prepared were characterised using various techniques. lndustrially important reactions such as acetalization and deacetalization, oxidative dehydrogenation of ethylbenzene, MTBE synthesis and Beckmann rearrangement of cinnamaldoxime and salicylaldoxime have been selected for the measurement of the catalytic activity of the systems. The work is presented in eight chapters
Resumo:
We report results on the electronic, vibrational, and optical properties of SnO(2) obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO(2) electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO(2) dielectric function arising from optical phonons was also determined resulting the values of E > (1aSyen) (latt) (0) = 14.6 and E > (1ayen) (latt) (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of E >(1)(0) = 18.2 is predicted for the static permittivity constant of SnO(2).