912 resultados para Chloride ion diffusion coefficient
Resumo:
Synthesis of free standing conducting polypyrrole film using room temperature melt as the electrolyte is reported. We also report variation in the contribution of ionic conductance with temperature of the polymer film by four probe method and electrochemical properties like diffusion coefficient and ionic mobility of AlCl-4 doped polypyrrole film. An attempt has been made to arrive at the stability of charge carrier concentration over a temperature range of 295 to 350 K under vacuum. The film was characterized by optical techniques and scanning electron micrography.
Resumo:
The physical effect of high concentrations of reversibly dissolved SO2 on [C(2)mim][NTf2] was examined using cyclic voltammetry, chronoamperometry, and ESR spectroscopy. Cyclic voltammetry of the oxidation of solutions of ferrocene, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and chloride in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide ([C(2)mim][NTf2]) reveals an increase in limiting current of each species corresponding to the addition of increasing concentrations of sulfur dioxide. Quantitative chronoamperometry reveals an increase in each species' diffusion coefficient with SO2 concentration. When chronoamperometric data were obtained for ferrocene in [C(2)mim][NTf2] at a range of temperatures, the translational diffusion activation energy (29.0 +/- 0.5 kJ mol(-1)) was found to be in good agreement with previous studies. Adding SO2 results in apparent near-activationless translational diffusion. A significant decrease in the activation energy of rotational diffusion with the SO2 saturation of a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) solution in [C(2)mim][NTf2] (29.9 +/- 2.0 to 7.7 +/- 5.3 kJ mol(-1)) was observed using electron spin resonance (ESR) spectroscopy. The reversible physical absorption Of SO2 by [C(2)mim][NTf2] should have no adverse effect on the ability of that ionic liquid to be employed as a solvent in an electrochemical gas sensor, and it is possible that the SO2-mediated reduction of RTIL viscosity could have intrinsic utility.
Resumo:
We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.
Resumo:
Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.
Resumo:
Alkali activated slag (AAS) is a credible alternative to Portland cement (PC) based binder systems. The superior strength gain and low embodied carbon make it a potential binder for next generation concretes. However there is little known about the long term durability of AAS systems, especially the chloride transport and subsequent corrosion of reinforcing steel.
In this study, chloride transport through 12 AAS concretes with different alkali concentrations (Na2O% of mass of slag) and different modulus (Ms) of sodium silicate solution activator was investigated. A non-steady state chloride diffusion test was used for this study due to its similarity to the real exposure environment in terms of chloride transport through concrete. The results showed that the chloride concentration at the surface (Cs) of AAS concretes was higher than that for PC concrete.
However, lower non-steady state chloride diffusion coefficient (Dnssd) was obtained for the AAS concretes. The Dnssd of the AAS concretes decreased with the increase of Na2O% and Ms of 1.50 gave the lowest Dnssd. The results are encouraging and it can be concluded that AAS concrete offers a superior performance in terms of chloride transport.
Resumo:
Chloride-induced corrosion of steel in concrete is one of most important durability and safety concern for reinforced concrete structures. To study chloride ingress into concrete is thus very important. However, most of the researchers focus on the studying chloride ingress through concrete samples without any loading. In reality concrete structures are subjected to different kinds of loads and therefore studying the effect of such loads on chloride transport is critical. In this work, 28 different concrete mixes were subjected to three levels of compressive load (0%, 50% and 75% of compressive failure load – f) for 24 hours. Further to unloading, these samples were subjected to non-steady state chloride diffusion test as per NT Build 443. The results were compared against the diffusion coefficient obtained for concrete samples that had no previous loading. D value for concretes subjected to 75% f showed a significant increase compared to 0% loading condition, but the increase was insignificant for 50% f. The results indicate that the influence of concrete mixes variables on D is more significant than that of loading level. Surface chloride concentration also increased with the loading level, which might be due to the increased concrete surface area caused by micro cracking.
Resumo:
Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D-35cl/D-37cl varied from 1.00128 +/- 0.00017 (1 sigma) at 2 degrees C to 1.00192 +/- 0.00015 at 80 degrees C. For bromine, D-79Br/D-81Br varied from 1.00098 +/- 0.00009 at 2 degrees C to 1.0064 +/- 0.00013 at 21 degrees C and 1.00078 +/- 0.00018 (1 sigma) at 80 degrees C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.
Resumo:
One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.
Resumo:
A model for chloride transport in concrete is proposed. The model accounts for transport several transport mechanisms such as diffusion, advection, migration, etc. This work shows the chloride transport equations at the macroscopic scale in non-saturated concrete. The equations involve diffusion, migration, capillary suction, chloride combination and precipitation mechanisms. The material is assumed to be infinitely rigid, though the porosity can change under influence of chloride binding and precipitation. The involved microscopic and macroscopic properties of the materials are measured by standardized methods. The variables which must be imposed on the boundaries are temperature, relative humidity and chloride concentration. The output data of the model are the free, bound, precipitated and total chloride ion concentrations, as well as the pore solution content and the porosity. The proposed equations are solved by means of the finite element method (FEM) implemented in MATLAB (classical Galerkin formulation and the streamline upwind Petrov-Galerkin (SUPG) method to avoid spatial instabilities for advection dominated flows).
Resumo:
Este artículo estudia el proceso de fisuración del hormigón por corrosión de la armadura. Se presenta un modelo de transporte de cloruros en el hormigón, que contempla la no-linealidad de los coeficientes de difusión, las isotermas de absorción y el fenómeno de convección. A partir de los resultados de penetración de cloruros, se establece la corrosión de la armadura con la consiguiente expansión radial. La fisuración del hormigón se estudia con un modelo de fisura embebida. Los dos modelos (iniciación y propagación) se incorporan en un programa de elementos finitos. El modelo se contrasta con resultados experimentales, obteniéndose un buen ajuste. Una de las dificultades es establecer el umbral de concentración de cloruros que da lugar al inicio de la corrosión de la armadura.This paper is focused on the chloride-induced corrosion of the rebar in RC. A comprehensive model for the chloride ingress into concrete is presented, with special attention to non-linear diffusion coefficients, chloride binding isotherms and convection phenomena. Based on the results of chloride diffusion, subsequent active corrosion is assumed and the radial expansion of the corroded reinforcement reproduced. For cracking simulation, the Strong Discontinuity Approach is applied. Both models (initiation and propagation corrosion stages) are incorporated in the same finite element program and chained. Comparisons with experimental results are carried out, with reasonably good agreements being obtained, especially for cracking patterns. Major limitations refer to difficulties to establish precise levels of basic data such as the chloride ion content at concrete surface, the chloride threshold concentration that triggers active corrosion, the rate of oxide production or the rust mechanical properties.
Resumo:
Este artículo estudia el proceso de fisuración del hormigón por corrosión de la armadura. Se presenta un modelo de transporte de cloruros en el hormigón, que contempla la no-linealidad de los coeficientes de difusión, las isotermas de absorción y el fenómeno de convección. A partir de los resultados de penetración de cloruros, se establece la corrosión de la armadura con la consiguiente expansión radial. La fisuración del hormigón se estudia con un modelo de fisura embebida. Los dos modelos (iniciación y propagación) se incorporan en un programa de elementos finitos. El modelo se contrasta con resultados experimentales, obteniéndose un buen ajuste. Una de las dificultades es establecer el umbral de concentración de cloruros que da lugar al inicio de la corrosión de la armadura.This paper is focused on the chloride-induced corrosion of the rebar in RC. A comprehensive model for the chloride ingress into concrete is presented, with special attention to non-linear diffusion coefficients, chloride binding isotherms and convection phenomena. Based on the results of chloride diffusion, subsequent active corrosion is assumed and the radial expansion of the corroded reinforcement reproduced. For cracking simulation, the Strong Discontinuity Approach is applied. Both models (initiation and propagation corrosion stages) are incorporated in the same finite element program and chained. Comparisons with experimental results are carried out, with reasonably good agreements being obtained, especially for cracking patterns. Major limitations refer to difficulties to establish precise levels of basic data such as the chloride ion content at concrete surface, the chloride threshold concentration that triggers active corrosion, the rate of oxide production or the rust mechanical properties.
Resumo:
Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.
Resumo:
The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.
Resumo:
An existing model for solvent penetration and drug release from a spherically-shaped polymeric drug delivery device is revisited. The model has two moving boundaries, one that describes the interface between the glassy and rubbery states of polymer, and another that defines the interface between the polymer ball and the pool of solvent. The model is extended so that the nonlinear diffusion coefficient of drug explicitly depends on the concentration of solvent, and the resulting equations are solved numerically using a front-fixing transformation together with a finite difference spatial discretisation and the method of lines. We present evidence that our scheme is much more accurate than a previous scheme. Asymptotic results in the small-time limit are presented, which show how the use of a kinetic law as a boundary condition on the innermost moving boundary dictates qualitative behaviour, the scalings being very different to the similar moving boundary problem that arises from modelling the melting of an ice ball. The implication is that the model considered here exhibits what is referred to as ``non-Fickian'' or Case II diffusion which, together with the initially constant rate of drug release, has certain appeal from a pharmaceutical perspective.