939 resultados para Chemical tests and reagents.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a �Full Text� option. The original article is trackable via the �References� option.
Resumo:
Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.
Resumo:
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred 0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nonextremal solution with warped resolved-deformed conifold background is important to study the infrared limit of large N thermal QCD. Earlier works in this direction have not taken into account all the backreactions on the geometry, namely from the branes, fluxes, and black-hole carefully. In the present work we make some progress in this direction by solving explicitly the supergravity equations of motions in the presence of the backreaction from the black hole. The backreactions from the branes and the fluxes on the other hand and to the order that we study, are comparatively suppressed. Our analysis reveal, among other things, how the resolution parameter would depend on the horizon radius and how the renormalization group flows of the coupling constants should be understood in these scenarios, including their effects on the background three-form fluxes. We also study the effect of switching on a chemical potential in the background and, in a particularly simplified scenario, compute the actual value of the chemical potential for our case.
Resumo:
The thermodynamic properties of the HoRhO3 were determined in the temperature range from 900 to 1300 K by using a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of orthorhombic perovskite HoRhO3, from Ho2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure, can be expressed by the equation; Delta G(f)degrees((ox)) (+/- 78)/(J/mol) = -50535 + 3.85(T/K) Using the thermodynamic data of HoRhO3 and auxiliary data for binary oxides from the literature, the phase relations in the Ho-Rh-O system were computed at 1273 K. Thermodynamic data for intermetallic phases in the binary Ho-Rh were estimated from experimental enthalpy of formation for three compositions from the literature and Miedema's model, consistent with the phase diagram. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1273 K, and temperature-composition diagrams at constant oxygen partial pressures were computed for the system Ho-Rh-O. The decomposition temperature of HoRhO3 is 1717(+/- 2) K in pure O-2 and 1610(+/- 2) K in air at a total pressure p(o) = 0.1 MPa.
Resumo:
The essential oil from the leaves of Didymocarpus tomentosa was extracted by hydrodistillation and analyzed by GC/FID and GC/MS. Twenty five constituents amounting to 81.6% of the oil were identified. The leaf oil contained 78.7% sesquiterpenes and 2.9% monoterpenes. The leaf essential oil of D. tomentosa is a unique caryophyllene-rich natural source containing beta-caryophyllene, caryophyllene oxide, alpha-humulene and humulene oxide. The cytotoxic activity of the oil was determined by the BSLT using shrimp larva and the MTT assay using HeLa tumor cell line. The oil showed significant cytotoxic activity with LC50 and IC50 values of 12.26 and 11.4 mu g/mL, respectively. This is the first report on the chemical composition and cytotoxic activity of the essential oil of D. tomentosa.
Resumo:
The flexibility of the water lattice in clathrate hydrates and guest-guest interactions has been shown in previous studies to significantly affect the values of the thermodynamic properties, such as chemical potentials and free energies. Here we describe methods for computing occupancies, chemical potentials, and free energies that account for the flexibility of water lattice and guest-guest interactions in the hydrate phase. The methods are validated for a wide variety of guest molecules, such as methane, ethane, carbon dioxide, and tetrahydrodfuran by comparing the predicted occupancy values of guest molecules with those obtained from isothermal isobaric semigrand Monte Carlo simulations. The proposed methods extend the van der Waals and Platteuw theory for clathrate hydrates, and the Langmuir constant is calculated based on the structure of the empty hydrate lattice. These methods in combination with development of advanced molecular models for water and guest molecules should lead to a more thermodynamically consistent theory for clathrate hydrates.
Resumo:
Nestmate discrimination plays an important role in preserving the integrity of social insect colonies. It is known to occur in the primitively eusocial wasp Ropalidia marginata in which non-nestmate conspecifics are not allowed to come near a nest. However, newly eclosed females are accepted in foreign colonies, suggesting that such individuals may not express the cues that permit differentiation between nestmates and non-nestmates. As cuticular hydrocarbons (CHCs) have been implicated as chemosensory cues used in nestmate recognition in other species, we investigated, using bioassays and chemical analyses, whether CHCs can play a role in nestmate recognition in R. marginata. We found that individuals can be differentiated according to colony membership using their CHC profiles, suggesting a role of CHCs in nestmate discrimination. Non-nestmate CHCs of adult females received more aggression than nestmate CHCs, thereby showing that CHCs are used as cues for nestmate recognition. Contrarily, and as expected, CHCs of newly eclosed females were not discriminated against when presented to a foreign colony. Behavioural sequence analysis revealed the behavioural mechanism involved in sensing nestmate recognition cues. We also found that newly eclosed females had a different CHC profile from that of adult females, thereby providing an explanation for why young females are accepted in foreign colonies. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein protein complexes are involved in many essential cellular processes. Interfaces of protein protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence structure function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase inhibitor protein complexes. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
Resumo:
In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.
Resumo:
We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein (KK) mode of the gauge boson to be similar to 8 TeV, while for the custodial case it is similar to 3 TeV. The deformed model is the least fine-tuned of all which can give a good fit for KK masses < 2 TeV depending on the choice of the model parameters. We also comment on the fine-tuning in each case.
Resumo:
Chemical looping combustion (CLC) is a means of combusting carbonaceous fuels, which inherently separates the greenhouse gas carbon dioxide from the remaining combustion products, and has the potential to be used for the production of high-purity hydrogen. Iron-based oxygen carriers for CLC have been subject to considerable work; however, there are issues regarding the lifespan of iron-based oxygen carriers over repeated cycles. In this work, haematite (Fe2O3) was reduced in an N2+CO+CO2 mixture within a fluidised bed at 850°C, and oxidised back to magnetite (Fe3O4) in a H2O+N2 mixture, with the subsequent yield of hydrogen during oxidation being of interest. Subsequent cycles started from Fe3O4 and two transition regimes were studied; Fe3O4↔Fe0.947O and Fe 3O4↔Fe. Particles were produced by mechanical mixing and co-precipitation. In the case of co-precipitated particles, Al was added such that the ratio of Fe:Al by weight was 9:1, and the final pH of the particles during precipitation was investigated for its subsequent effect on reactivity. This paper shows that co-precipitated particles containing additives such as Al may be able to achieve consistently high H2 yields when cycling between Fe3O4 and Fe, and that these yields are a function of the ratio of [CO2] to [CO] during reduction, where thermodynamic arguments suggest that the yield should be independent of this ratio. A striking feature with our materials was that particles made by mechanical mixing performed much better than those made by co-precipitation when cycling between Fe3O4 and Fe0.947O, but much worse than co-precipitated particles when cycling between Fe3O 4 and Fe.