927 resultados para Chemical modification of polymers
Resumo:
In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40 degrees in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.
Resumo:
Presentation submitted to PSE Seminar, Chemical Engineering Department, Center for Advanced Process Design-making (CAPD), Carnegie Mellon University, Pittsburgh (USA), October 2012.
Resumo:
Mode of access: Internet.
Resumo:
N-Heterocyclic cations are incorporated into proteins using 5-(2-bromoethyl)phenanthridinium bromide, which selectively reacts with either cysteine or lysine residues, resulting in ethylphenanthridinium (Phen) or highly stable cyclised dihydro-imidazo-phenanthridinium (DIP) adducts respectively; these modifications have been found to manipulate the observed structure of lysozyme and bovine serum albumin by AFM.
Resumo:
The principal objective of this work was to improve the mechanical properties of glass fibre reinforced polypropylene (PP) composites by the mechanochemical modification of the PP. The modification of the PP was carried out by reactive processing of the PP with a modifier in a Buss Ko-Kneader. Two main types of modifier were evaluated one type based on N-substituted maleimides the others based on 2-allylamino-4,6-dichloro-1,3,5-triazine (ACCT). The modification of the PP was carried out in two stages. Firstly the PP was reactively processed with the modifier and a free radical initiator. The objective of this stage was to bind the modifier to the PP. In the second stage the modified PP was reactively processed with the glass fibre. The objective in this stage was to form a chemical bond between the bound modifier and the silane coupling agent on the surface of the glass. Two silane coupling agents were evaluated these had a aliphatic chloro group and an aliphatic amino group respectively available for reaction with the modifier. The modifiers synthesised for this work had two main functional groups. The first was a double bond for free radical addition to the PP. The second was an organic group chosen for its potential reactivity to the silane coupling agent. A preliminary investigation was carried out using maleic anhydride (MA) as the modifier, this is reactive to the amino silane coupled glass. Studies of a commercially available system were also carried out for comparison purposes. During the work it was found that the amino silane coupled glass fibres produced, without any modification being made to the PP, mechanical properties comparable to the commercial system. Further any modification added to the amino silane system failed to improve the mechanical performance and in some cases acted in the opposite fashion. This failure was evident even when a chemical bond between glass fibre and PP could be shown. In the case of the chloro silane coupled glass fibres the mechanical properties of the composite without modification were poorer than those of the commercial system. It was found that the mechanical properties of these systems could be enhanced by the modifiers, however, no system tested significantly out performed the commercial system. Of the two modifier systems tested those based on the n-substituted maleimides were more successful at enhancing mechanical properties than those based on ACCT. This was attributed to the Poor chemical binding of the ACCT based modifiers to the PP. During the work it was found that several of the modifiers improved the properties of the PP when no glass fibres were present, particularly the % elongation and impact strength. It is possible that these modifiers could be used to improve the impact performance of PP, this may be of particular interest in recycling. These modifiers have only been tested for improving the properties of glass fibre composites. The N-substituted maleimide based modifiers could be used as compatibleisers for alloys of PP and other polymers. These could function by the formation of the bond with PP via the double bond whilst the group attached to the nitrogen atom could react with the alloying polymer.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.
Resumo:
Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4
Resumo:
The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.
Resumo:
Ricinus communis agglutinin was subjected to various chemical treatments and the effect on its hemagglutinating and saccharide-binding properties was studied. Acetylation, succinylation and citraconylation led to a complete loss in the activity of the agglutinin, whereas reductive methylation had no effect on the activity, showing that charged amino groups were involved in the hemagglutinating and saccharide-binding activity of Ricinus agglutinin. Modification of tryptophyl, arginyl and carboxyl-group-containing residues did not lead to any loss in the activity of the agglutinin. Acetylation of tyrosyl groups with N-acetylimidazole strongly reduced the hemagglutinating and saccharide-binding property of Ricinus agglutinin. The loss in activity was restored on deacetylation of the tyrosyl groups. Modification of tyrosyl residues also led to a change in the immunological properties of the agglutinin. The initial rate of modification of tyrosyl and amino groups and the concomitant loss of activity was reduced in the presence of lactose.
Resumo:
A correlation has been established between the heat of depolymerization (DeltaH) of vinyl polymers for going from solid polymer state to gaseous monomer state and the activation energy (E) of degradation. On this basis it has been shown that the rate controlling step in the degradation lies in the initiation step. Attempt has been made to correlate theE and DeltaH with glass transition temperature (Tg) and melting temperature (Tm) of the polymers.[/ p]
Resumo:
Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.