998 resultados para Chemical equilibrium.
Resumo:
We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg + Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca + Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti-rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B. This suggests that a significant mass fraction of more evolved products is needed to balance the high Mg# of the bulk hole. Calculations show that 25%-45% of average Eastern Atlantis II Fracture Zone basalt is needed to combine with 55%-75% of bulk Hole 735B rocks to give a melt of Mg# 0.637, parental to the most primitive Hole 735B cumulate. On the other hand, the parental melt with Mg# 0.637 is far too evolved to be in equilibrium with residual mantle olivine of Fo > 0.89. Therefore, a significant mass fraction of more primitive cumulate (e.g., high Mg# dunite and troctolite) is yet to be sampled. This hidden cumulate could well be deep in the lower crust or simply in the mantle section. We favor the latter because of the thickened cold thermal boundary layer atop the mantle beneath slow-spreading ridges, where cooling and crystallization of ascending mantle melts is inevitable. These observations and data interpretation require reconsideration of the popular concept of primary mantle melts and relationships among the extent of mantle melting, melt production, and the composition and thickness of igneous crust.
Resumo:
The Internal Structure of Hydrogen-Air Diffusion Flames. Tho purpose of this paper is to study finite rate chemistry effects in diffusion controlled hydrogenair flames undor conditions appearing in some cases in a supersonic combustor. Since for large reaction rates the flame is close to chemical equilibrium, the reaction takes place in a very thin region, so thata "singular perturbation "treatment" of the problem seems appropriate. It has been shown previously that, within the inner or reaction zone, convection effects may be neglocted, the temperature is constant across the flame, and tho mass fraction distributions are given by ordinary differential equations, whore tho only independent variable involved is tho coordinate normal to the flame surface. Tho solution of the outer problom, which is a pure mixing problem with the additional condition that fuol and oxidizer do not coexist in any zone, provides t h e following information: tho flame position, rates of fuel consumption, temperature, concentrators of species, fluid velocity outside of tho flame, and the boundary conditions required to solve the "inner problem." The main contribution of this paper consists in the introduction of a fairly complicated chemical kinetic scheme representing hydrogen-oxygen reaction. The nonlinear equations expressing the conservation of chemical species are approximately integrated by means of an integral method. It has boen found that, in the case considered of a near-equilibrium diffusion flame, tho role played by the dissociation-recombination reactions is purely marginal, and that somo of the second order "shuffling" reactions are close to equilibrium. The method shown here may be applied to compute the distanco from the injector corresponding to a given separation from equilibrium, say ten to twenty percent. For the casos whore this length is a small fraction of the combustion zone length, the equilibrium treatment describes properly tho flame behavior.
Resumo:
Characterization of dissolved CO2 and alkane gas in clayrocks may help assessing the confinement properties of geological barriers considered as potential host rocks for a deep geological disposal as well as for caprocks of gas storages. A monitoring of alkanes with CO2, combined with carbon isotopes was performed on core samples coming from Underground Research Laboratories (Bure, Mont Terri, Tournemire) and the Schlattingen borehole in France and Switzerland. Composition of hydrocarbon gas and delta C-13 of methane strongly suggest a dominant thermogenic origin of methane which is mixed with a bacterial origin for the Toarcian shales, Pliensbachien and Callovian-Oxfordian clayrocks. Results also evidence the contrasted behavior of CO2, which is controlled by chemical equilibrium between pore water and carbonate mineralogy, compared to the alkanes which are present in the porosity as a stock of dissolved gases which can be depleted during degassing experiments. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Thesis t.-p. attached to the cover of the reprint from the Journal of the American chemical society, vol. XL, no. 3, March 1918, by Gilbert N. Lewis and Donald B. Keyes.
Resumo:
"This report is based on research sponsored by the Rome Air Development Center of the Air Research and Development Command under Contract AF 30(602)-2267."
Resumo:
Mode of access: Internet.
Resumo:
At head of title: Contributions to cosmogony and the fundamental problems of geology.
Resumo:
First published in French in Kongl. Svenska vetenskapsakademiens Handlingar. bd. 21, no. 17, 1886. Presented Oct. 14, 1885.
Resumo:
Oil shale processing produces an aqueous wastewater stream known as retort water. The fate of the organic content of retort water from the Stuart oil shale project (Gladstone, Queensland) is examined in a proposed packed bed treatment system consisting of a 1:1 mixture of residual shale from the retorting process and mining overburden. The retort water had a neutral pH and an average unfiltered TOC of 2,900 mg l(-1). The inorganic composition of the retort water was dominated by NH4+. Only 40% of the total organic carbon (TOC) in the retort water was identifiable, and this was dominated by carboxylic acids. In addition to monitoring influent and effluent TOC concentrations, CO2 evolution was monitored on line by continuous measurements of headspace concentrations and air flow rates. The column was run for 64 days before it blocked and was dismantled for analysis. Over 98% of the TOC was removed from the retort water. Respirometry measurements were confounded by CO2 production from inorganic sources. Based on predictions with the chemical equilibrium package PHREEQE, approximately 15% of the total CO2 production arose from the reaction of NH4+ with carbonates. The balance of the CO2 production accounted for at least 80% of the carbon removed from the retort water. Direct measurements of solid organic carbon showed that approximately 20% of the influent carbon was held-up in the top 20cm of the column. Less than 20% of this held-up carbon was present as either biomass or as adsorbed species. Therefore, the column was ultimately blocked by either extracellular polymeric substances or by a sludge that had precipitated out of the retort water.
Resumo:
Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.
Resumo:
Salt Lake Crater (SLC), on the island of Oahu, Hawaii, is best known for its wide variety of crustal and mantle xenoliths. SLC is only the second locality in oceanic regimes where deeper portions of the upper mantle (i.e., garnet-bearing xenoliths) have been sampled. These garnet-bearing xenoliths, that contain clinopyroxene (cpx), orthopyroxene (opx), olivine, and garnet, are the focus of this study Opx is present in small amounts. Cpx has exsolved opx, spinel, and garnet. In addition, many xenoliths contain spinel-cored garnets. In some xenoliths, opx crystals contain exsolved cpx and spinel. Olivine, cpx, and garnet are in chemical equilibrium with each other. Opx is not in chemical equilibrium with the other dominant minerals. ^ The origin of these xenoliths is interpreted on the basis of liquidus phase relations in the simplified system CaO-MgO-Al2O3-SiO 2 (CMAS) system at 3.0 and 5.0 GPa. The occurrence of spinel-cored garnets and the Ol-Cpx-Gt assemblage suggests that the depth of crystallization of the SLC xenoliths examined was ∼100–110 km (i.e., uppermost asthenosphere). ^ The experimental study is concerned with the equilibrium melting of garnet clinopyroxenite at 2.0–2.5 GPa and it explores the role of such melting process in the generation of tholeiitic and alkalic lavas in ocean island basalts (OIBs). The starting material is a tholeiitic picrite in terms of its normative composition. Its solidus temperature is 1295 ± 15°C and 1332 ± 15°C at 2.0 and 2.5 GPa, respectively. At 2.0 GPa, the liquidus phase is opx that is in reaction relation with the melt. It reacts out at ∼40°C below the liquidus as cpx and spinel appear. Garnet appears long after opx disappearance. Opx is absent in runs at 2.5 GPa. Cpx and garnet appear simultaneously on the liquidus at 2.5 GPa, and are the only assemblage throughout the melting interval. At both the pressures, the partial melts are olivine-hypersthene normative at high melt fraction ( F), becoming moderately to strongly nepheline-normative, as F decreases. It is concluded that the involvement of CO 2 (and perhaps H2O) is necessary for the generation of alkalic melts in most OIBs. ^
Resumo:
Spinel harzburgites from ODP Leg 209 (Sites 1272A, 1274A) drilled at the Mid-Atlantic ridge between 14°N and 16°N are highly serpentinized (50-100%), but still preserve relics of primary phases (olivine >= orthopyroxene >> clinopyroxene). We determined whole-rock B and Li isotope compositions in order to constrain the effect of serpentinization on d11B and d7Li. Our data indicate that during serpentinization Li is leached from the rock, while B is added. The samples from ODP Leg 209 show the heaviest d11B (+29.6 to +40.52 per mil) and lightest d7Li (-28.46 to +7.17 per mil) found so far in oceanic mantle. High 87Sr/86Sr ratios (0.708536 to 0.709130) indicate moderate water/rock ratios (3 to 273, on the average 39), in line with the high degree of serpentinization observed. Applying the known fractionation factors for 11B/10B and 7Li/6Li between seawater and silicates, serpentinized peridotite in equilibrium with seawater at conditions corresponding to those of the studied drill holes (pH: 8.2; temperature: 200 °C) should have d11B of +21.52 per mil and d7Li of +9.7 per mil. As the data from ODP Leg 209 are clearly not in line with this, we modelled a process of seawater-rock interaction where d11B and d7Li of seawater evolve during penetration into the oceanic plate. Assuming chemical equilibrium between fluid and a rock with d11B and d7Li of ODP Leg 209 samples, we obtain d11B and d7Li values of +50 to +60 per mil, -2 to +12 per mil, respectively, for the coexisting fluid. In the oceanic domain, no hydrothermal fluids with such high d11B have yet been found, but are predicted by theoretical calculations. Combining the calculated water/rock ratios with the d7Li and d11B evolution in the fluid, shows that modification of d7Li during serpentinization requires higher water/rock ratios than modification of d11B. Extremely heavy d11B in serpentinized oceanic mantle can potentially be transported into subduction zones, as the B budget of the oceanic plate is dominated by serpentinites. Extremely light d7Li is unlikely to survive as the Li budget is dominated by the oceanic crust, even at small fractions.
Resumo:
Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z approximate to 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.