975 resultados para Chemical detection
Resumo:
Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.
Resumo:
Cancer development is a long-term multistep process which allows interventional measure before the clincial disease emerges. the detection of natural substances which can block the process of carcinogenesis is a important as the identification of anti-tumoral drugs since they might be used in chemoprevention of cancer in high-risk groups. In vivo rodent models of chemical caecinogenesis have been used to study plant-derived inhibitors of carcinofenesis such as indols, coumarins, isothiocyanates, flavones, phenols and allyl-sulfides. Since the standard in vivo rodent bioassay is prolonged and expensive, shorter reliable protocols are needed. Two in vivo medium-term protocols for evaluation of modifiers of carcinogenesis are presented, one related to liver and the other to bladder cancer. Both protocols use rats, last 8 and 36 weeks and are based on the two-step concept of carcinogenesis: initiation and promotion. The protocols use respectively the development of altered foci of hepatocytes expressing immunochistochemically the placental form of gluthation S-transferase and the appearence of pre-neoplastic urothelium and papillomas as the "end-points". the use of these protocols for detection of plantpderived inhibitors of carcinogenesis appear warranted.
Resumo:
As part of the ACuteTox project aimed at the development of non-animal testing strategies for predicting human acute oral toxicity, aggregating brain cell cultures (AGGR) were examined for their capability to detect organ-specific toxicity. Previous multicenter evaluations of in vitro cytotoxicity showed that some 20% of the tested chemicals exhibited significantly lower in vitro toxicity as expected from in vivo toxicity data. This was supposed to be due to toxicity at supracellular (organ or system) levels. To examine the capability of AGGR to alert for potential organ-specific toxicants, concentration-response studies were carried out in AGGR for 86 chemicals, taking as endpoints the mRNA expression levels of four selected genes. The lowest observed effect concentration (LOEC) determined for each chemical was compared with the IC20 reported for the 3T3/NRU cytotoxicity assay. A LOEC lower than IC20 by at least a factor of 5 was taken to alert for organ-specific toxicity. The results showed that the frequency of alerts increased with the level of toxicity observed in AGGR. Among the chemicals identified as alert were many compounds known for their organ-specific toxicity. These findings suggest that AGGR are suitable for the detection of organ-specific toxicity and that they could, in conjunction with the 3T3/NRU cytotoxicity assay, improve the predictive capacity of in vitro toxicity testing.
Resumo:
Since the 1990's, cheating athletes have abused substances to increase their oxygen transport capabilities; among these substances, recombinant EPO is the most well known. Currently, other investigational pharmaceutical products are able to produce an effect similar to EPO but without having chemical structures related to EPO; these are the synthetic erythropoiesis stimulating agents (ESAs). Peginesatide (also known as Hematide?) is being developed by Affymax and Takeda and, if approved by regulatory authorities, could soon be released on the international market. To detect potential athletic abuse of this product and deter athletes who consider cheating, we initiated a collaboration to implement a detection test for anti-doping purposes. Peginesatide is a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent that is designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. It is undetectable using current anti-doping tests due to its lack of sequence homology to EPO. To detect and deter potential abuse of peginesatide, we initiated an industry/antidoping laboratory collaboration to develop and validate screening and confirmation assays so that they would be available before peginesatide reaches the market. We describe a screening ELISA and a confirmation assay consisting of immune-purification followed by separation with SDS-PAGE and revelation with Western double blotting. Both assays can detect 0.5 ng/mL concentrations of peginesatide in blood samples, enabling detection for several days after administration of a physiologically relevant dose. This initial report describes experimental characterization of these assays, including testing with a blinded set of samples from a clinical study conducted in healthy volunteers.
Resumo:
Species-specific chemical signals released through urine, sweat, saliva and feces are involved in communication between animals. Urinary biochemical constituents along with pheromones may contribute to variation across reproductive cycles and facilitate to estrus detection. Hence, the present study was designed to analyze such biochemical profiles, such as proteins, carbohydrates, lipids, fatty acids, in response with steroid hormones such as estradiol and progesterone. The experimental groups were normal, prepubertal, ovariectomized, and ovariectomized with estrogentreated female mice. In normal mice, the protein and lipid concentrations in urine were significantly higher in proestrus and estrus phases and the quantity of fatty acids was also comparatively higher in estrus. Furthermore, certain fatty acids, namely tridecanoic, palmitic and oleic acids, were present during proestrus and estrus phases, but were exclusively absent in ovariectomized mice. However, the carbohydrate level was equally maintained throughout the four phases of estrous cycle. For successful communication, higher concentrations of protein and specific fatty acids in estrus are directly involved. The significant increase in estradiol at estrus and progesterone at metestrus seems to be of greater importance in the expression pattern of biochemical constituents and may play a notable role in estrous cycle regulation. Thus, we conclude that the variations observed in the concentration of the biochemical constituents depend on the phase of the reproductive cycle as well as hormonal status of animals. The appearance of protein and specific fatty acids during estrus phase raises the possibility to use these as a urinary indicators for estrus detection.
Resumo:
The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.
Resumo:
Background: The glycosylated hemoglobin (HbA1c) is used to help monitor the degree of a diabetic’s hyperglycemia. Security and accuracy of the methods used in its detection are affected by variants forms of Hb or elevations in levels of Fetal Hb (HbF). These interference are the result of a change in the haemoglobin total net charge of the variant due of a substitution of one amino acid in the remaining amino terminal of the beta chain. International Standardization for HbA1c values (NGSP) not include interference assessment as part of the certification program. Therefore, the effect of each variant or the lifting of the HbF on HbA1c result should be examined in each sample depending on the detected variant and the method used for the detection of the same. The objectives were: to describe the possible variants of Hb and their interference in HbA1c measurement by our method, after the implementation of a computer program for their detection. To identify some variants detected by chromatography liquid ion exchange high resolution (HPLC) with DNA molecular sequencing.
Resumo:
We present a compact portable biosensor to measure arsenic As(III) concentrations in water using Escherichia coli bioreporter cells. Escherichia coli expresses green fluorescent protein in a linearly dependent manner as a function of the arsenic concentration (between 0 and 100 μg/L). The device accommodates a small polydimethylsiloxane microfluidic chip that holds the agarose-encapsulated bacteria, and a complete optical illumination/collection/detection system for automated quantitative fluorescence measurements. The device is capable of sampling water autonomously, controlling the whole measurement, storing and transmitting data over GSM networks. We demonstrate highly reproducible measurements of arsenic in drinking water at 10 and 50 μg/L within 100 and 80 min, respectively.
Resumo:
Olfactory systems are evolutionarily ancient, underlying the common requirement for all animals to sense and respond to diverse volatile chemical signals in their environment. Odor detection is mediated by odorant receptors (ORs) that, in most olfactory systems, comprise large families of divergent G protein-coupled receptors. Here, I discuss our and others' recent investigations of ORs in the fruit fly, Drosophila melanogaster, which have revealed insights into the distinct evolutionary origin and molecular function of insect ORs. I also describe a bioinformatics strategy that we developed to identify molecules that function with these insect-specific receptors in odor detection.
Resumo:
Soil organic matter from the surface horizon of two Brazilian soils (a Latosol and a Chernosol), in bulk samples (in situ SOM) and in HF-treated samples (SOM), was characterized by elemental analyses, diffuse reflectance (DRIFT) and transmission Fourier transform infrared spectroscopy (T-FTIR). Humic acids (HA), fulvic acids (FA) and humin (HU) isolated from the SOM were characterized additionally by ultraviolet-visible spectroscopy (UV-VIS). After sample oxidation and alkaline treatment, the DRIFT technique proved to be more informative for the detection of "in situ SOM" and of residual organic matter than T-FTIR. The higher hydrophobicity index (HI) and H/C ratio obtained in the Chernosol samples indicate a stronger aliphatic character of the organic matter in this soil than the Latosol. In the latter, a pronounced HI decrease was observed after the removal of humic substances (HS). The weaker aliphatic character, the higher O/C ratio, and the T-FTIR spectrum obtained for the HU fraction in the Latosol suggest the occurrence of surface coordination of carboxylate ions. The Chernosol HU fraction was also oxygenated to a relatively high extent, but presented a stronger hydrophobic character in comparison with the Latosol HU. These differences in the chemical and functional group composition suggest a higher organic matter protection in the Latosol. After the HF treatment, decreases in the FA proportion and the A350/A550 ratio were observed. A possible loss of FA and condensation of organic molecules due to the highly acid medium should not be neglected.
Resumo:
The increase of total choline in tumors has become an important biomarker in cancer diagnosis. Choline and choline metabolites can be measured in vivo and in vitro using multinuclear MRS. Recent in vivo(13)C MRS studies using labeled substrates enhanced via dynamic nuclear polarization demonstrated the tremendous potential of hyperpolarization for real-time metabolic studies. The present study demonstrates the feasibility of detecting hyperpolarized (15)N labeled choline in vivo in a rat head at 9.4 T. We furthermore report the in vitro (172 +/- 16 s) and in vivo (126 +/- 15 s) longitudinal relaxation times. We conclude that with appropriate infusion protocols it is feasible to detect hyperpolarized (15)N labeled choline in live animals.
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Resumo:
Après avoir situé le contexte de la recherche et défini les enjeux principaux du travail, différents types de nanoparticules, ainsi que leurs principales caractéristiques, sont parcourues. L'élaboration de critères de sélection ayant permis de déterminer les types de nanoparticules potentiellement adaptés à !a détection de traces papillaires, l'étude s'est alors focalisée sur deux familles de composés: les quantum dots et les nanoparticules d'oxyde de silicium. Deux types de quantum dots ont été synthétisés : le tellurure de cadmium et le sulfure de zinc). Ils n'ont toutefois pas permis la détection de traces papillaires réalistes. En effet, seules des traces fraîches et enrichies en sécrétions ont pu être mises en évidence. Toutefois, des résultats ont été obtenus avec les deux types de quantum dots pour la détection de traces papillaires sanglantes. Après optimisation, les techniques rivalisent avec les méthodes couramment appliquées en routine. Cependant, l'interaction se produisant entre les traces et les nanoparticules n'a pas pu être déterminé. Les nanoparticules d'oxyde de silicium ont dès lors été appliquées dans le but de comprendre plus en détails les interactions avec les traces papillaires. Ces nanoparticules ont l'avantage d'offrir un très bon contrôle de surface, permettant ainsi une étude détaillée des phénomènes en jeu. Des propriétés de surface variables ont dès lors été obtenues en greffant diverses molécules à la surface des nanoparticules d'oxyde de silicium. Après avoir exploré différentes hypothèses d'interaction, il a pu être déterminé qu'une réaction chimique se produit lors qu'un groupement de type carboxyle est présent à la surface des particules. Ce groupement réagit avec les fonctions amines primaires des sécrétions. L'interaction chimique a ensuite pu être renforcée par l'utilisation d'un catalyseur, permettant d'accélérer la réaction. Dans la dernière partie du travail, les nanoparticules d'oxyde de silicium ont été comparées à une technique utilisée en routine, la fumigation de cyanoacrylate. Bien que des études plus approfondies soient nécessaires, il s'avère que l'application de nanoparticules d'oxyde de silicium permet une détection de très bonne qualité, moins dépendante du donneur que les techniques courantes. Ces résultats sont prometteurs en vue du développement d'une technique possédant une sensibilité et une sélectivité accrue. - Having situated the background of research and identified key issues of work, different types of nanoparticles and their main features are reviewed. The development of selection criteria lead to the identification of nanoparticles types potentially suitable for fingermarks detection. The study focused then On two families of compounds: quantum dots and silicon oxide nanoparticles. Two types of quantum dots were synthesized and characterised: cadmium telluride and zinc sulphide. Unfortunally, they did not allow the detection realistic fingermarks. Indeed, only fresh and groomed fingermarks have been detected. However, results have been obtained with both types of quantum dots for the detection of fingermarks in blood. After optimization procedures, the quantum dots based teshniques compete with the methods currently used in routine. However, the interaction occurring between fingermarks and nanoparticles could not be determined. Silicon oxide nanoparticles have therefore been applied in order to understand in detail the interactions With fingermarks. These nanoparticles have the advantage of providing a very good surface control, allowing am in-depth study of the phenomena involved. Versatile surface properties were therefore obtained by grafting various molecules on the surface of silicon oxide nanoparticles. Different hypotheses were investigated and it was determined that a chemical reaction occurred between the surface functionalised nanoparticles and the fingermark residues. The carboxyl groups on the surface of the particles react with primary amines of the secretions. Therefore, this interaction was improved by the use of a catalyst. In the last part of the work, silicon oxide nanoparticles were compared to a routinely used technique: cyanocrylate fuming. Although further studies are still needed, it appears that the application of silicon oxide nanoparticles allows fingermark detection of very good quality, with a lowered donor dependency. These results are promising for the development of techniques with greater sensitivity and selectivity.
Resumo:
This publication presents one of the first uses of silicon oxide nanoparticles to detect fingermarks. The study is not confined to showing successful detection of fingermarks, but is focused on understanding the mechanisms involved in the fingermark detection process. To gain such an understanding, various chemical groups are grafted onto the nanoparticle surface, and parameters such as the pH of the solutions or zeta potential are varied to study their influence on the detection. An electrostatic interaction has been the generally accepted hypothesis of interaction between nanoparticles and fingermarks, but the results of this research challenge that hypothesis, showing that the interaction is chemically driven. Carboxyl groups grafted onto the nanoparticle surfaces react with amine groups of the fingermark secretion. This formation of amide linkage between carboxyl and amine groups has further been favoured by catalyzing the reaction with a compound of diimide type. The research strategy adopted here ought to be applicable to all detection techniques using nanoparticles. For most of them the nature of the interaction remains poorly understood.
Resumo:
An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae plant, Morinda tomentosa, which was used as a model in these studies.