96 resultados para Chelonia mydas
Resumo:
The effect of the tumour-forming disease, fibropapillomatosis, on the somatic growth dynamics of green turtles resident in the Pala'au foraging grounds (Moloka'i, Hawai'i) was evaluated using a Bayesian generalised additive mixed modelling approach. This regression model enabled us to account for fixed effects (fibropapilloma tumour severity), nonlinear covariate functional form (carapace size, sampling year) as well as random effects due to individual heterogeneity and correlation between repeated growth measurements on some turtles. Somatic growth rates were found to be nonlinear functions of carapace size and sampling year but were not a function of low-to-moderate tumour severity. On the other hand, growth rates were significantly lower for turtles with advanced fibropapillomatosis, which suggests a limited or threshold-specific disease effect. However, tumour severity was an increasing function of carapace size-larger turtles tended to have higher tumour severity scores, presumably due to longer exposure of larger (older) turtles to the factors that cause the disease. Hence turtles with advanced fibropapillomatosis tended to be the larger turtles, which confounds size and tumour severity in this study. But somatic growth rates for the Pala'au population have also declined since the mid-1980s (sampling year effect) while disease prevalence and severity increased from the mid-1980s before levelling off by the mid-1990s. It is unlikely that this decline was related to the increasing tumour severity because growth rates have also declined over the last 10-20 years for other green turtle populations resident in Hawaiian waters that have low or no disease prevalence. The declining somatic growth rate trends evident in the Hawaiian stock are more likely a density-dependent effect caused by a dramatic increase in abundance by this once-seriously-depleted stock since the mid-1980s. So despite increasing fibropapillomatosis risk over the last 20 years, only a limited effect on somatic growth dynamics was apparent and the Hawaiian green turtle stock continues to increase in abundance.
Resumo:
Harmful algal blooms (HABs) have increased in abundance and severity in recent decades. Whereas the implications for human impacts and intoxication resulting from blooms have been extensively studied, the ecological implications of these microalgae are less well understood. Many HAB species produce biologically active, secondary metabolites and the fate of these toxins through the foodweb is generally not well understood unless it culminates in extensive fish mortalities or human poisonings. This review focusses on one HAB species, the cyanobacterium Lyngbya majuscula, and presents a hypothetical role for its involvement in fibro-papillornatosis (FP), a neoplastic disease of marine turtles. FP is expressed as benign tumours that grow both internally and externally on marine turtles, preventing vision, movement and organ function. The aetiology of FP is currently not conclusively understood, but virus material has been associated with tumours and previous studies have suggested a role for naturally produced tumour promoters. In this review, we present a hypothesis regarding the involvement of L. majuscula in FP, either through direct intoxication and action of tumour-promoting compounds or indirectly by causing seagrass loss and compromised immune function, thus leaving the turtles more susceptible to disease.
Resumo:
The cheek teeth in dugongs are considered to be largely non-functional whereas the oral horny pads are important both in mechanical disruption of the diet and in conveying seagrass through the mouth. Particle size distributions of digesta from 41 dead stranded dugongs were examined to investigate the relationship between degree of food breakdown, gut region and functional surface area of the mouthparts. The in vitro ease of fracture of major dietary seagrass species were compared. The rate of food breakdown through the gut appears to be more closely linked to fibre level of the diet than to size or age of the dugong and its mouthparts. Low fibre seagrass, for example Halophila ovalis, breaks down at a faster rate than high fibre seagrass, for example Zostera capricorni both in dugong guts and in vitro. Several structural characteristics of seagrass, including level and arrangement of fibre, and water content, make it particularly amenable to mechanical breakdown. The soft mouthparts of the dugong are highly modified so that the entire oral cavity functions to crush low fibre seagrasses. Thus, the dugong has developed an efficient method of food ingestion and mastication that is suited to processing large quantities of soft seagrass during short dive times. The potential cost to the dugong in having lost its hard dental surfaces is that it has become restricted to a low fibre diet.
Resumo:
In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles (Chelonia mydas). In the first year, hatchlings from eggs incubated at 26 degrees C were larger in size than hatchlings from 28 and 30 degrees C, whilst in the second year hatchlings from 25.5 degrees C were similar in size to hatchings from 30 degrees C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28 degrees C, hatchlings from eggs incubated at 25.5 and 26 degrees C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30 degrees C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.
Resumo:
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas)—one of the most abundant large-bodied herbivores in Shark Bay—appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities—and possibly ecosystems—through non-consumptive pathways.
Resumo:
[EN] Aim: A key life-history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular, we focus on the evidence for transatlantic transport.
Resumo:
[EN] Complex population structure has been described for the loggerhead sea turtle (Caretta caretta), revealing lower levels of population genetic structure in nuclear compared to mitochondrial DNA assays. This may result from mating during spatially overlapping breeding migrations, or male-biased dispersal as previously found for the green turtle (Chelonia mydas). To further investigate these multiple possibilities, we carried out a comparative analysis from twelve newly developed microsatellite loci and the mitochondrial DNA control region (~804 bp) in adult females of the Cape Verde Islands (n=158), and Georgia, USA (n=17).
Resumo:
[ES] The shores of Cape Verde hosts one of the most important nesting populations of the loggerhead turtle Caretta caretta in the world, as well as important feeding grounds for hawksbill Eretmochelys imbricata and green turtles Chelonia mydas. In the past few years, a number of scientific studies have demonstrated the relevance of the waters and beaches of this archipelago for the conservation of these endangered marine megavertebrates. This article aims to bring together the most relevant scientific information published on the subject so far. In addition, we will provide an overview of the current situation of sea turtles in Cape Verde, their conservation status and their importance in an international context.
Resumo:
The marine turtles biological characteristics and the impact they have been suffering in consequence of human activities have caused in the last decades the decrease of populations to unsustainable levels. All four of the species described in this paper are registered as endangered in a list by IUCN: Caretta caretta, Lepidochelys olivacea, Chelonia mydas, Dermochelys coriacea. The main causes of such impact include several fishing activities, mostly the surface longline. This paper discusses the monitoring of two foreigner longline fleet along the North East Brazilian coast between October of 2004 and September of 2005. Both operated in the West South Atlantic, one using the Chinese technique and the other the American. The American method s target species is the swordfish (Xiphias gladius), and it is characterized by using squid as bait, J 9/0 offset 5º hook, light sticks and night soaking. It also operates in shallower waters than the Chinese method. The source of information about the efforts and the catches came from onboard observers and were used to calculate the catching rate of turtles over 1000 hooks (CPUE). The American equipment caught more turtles (CPUE = 0,059; N= 103), mainly D. coriacea, while the Chinese longline caught mainly the L. olivacea and presented a CPUE= 0,018 (N= 89). The hooks were most frequently found attached to the mouth of C. caretta, C. mydas, and L. olivacea. The D. coriacea were most frequently caught by hooks externally attached to different parts of their body. There was no significant difference between the hook type catching and most turtles were still alive when released. The results suggest a greater potential of turtle catching by the American method. Besides the statistic tests have showed less interaction between the Chinese equipment and marine turtles, the catches of this fishing technique could have been underestimated due to miscommunication between the onboard observer and the vessel s crew plus the retrieve of the longline during night time
Resumo:
The marine turtles biological characteristics and the impact they have been suffering in consequence of human activities have caused in the last decades the decrease of populations to unsustainable levels. All four of the species described in this paper are registered as endangered in a list by IUCN: Caretta caretta, Lepidochelys olivacea, Chelonia mydas, Dermochelys coriacea. The main causes of such impact include several fishing activities, mostly the surface longline. This paper discusses the monitoring of two foreigner longline fleet along the North East Brazilian coast between October of 2004 and September of 2005. Both operated in the West South Atlantic, one using the Chinese technique and the other the American. The American method s target species is the swordfish (Xiphias gladius), and it is characterized by using squid as bait, J 9/0 offset 5º hook, light sticks and night soaking. It also operates in shallower waters than the Chinese method. The source of information about the efforts and the catches came from onboard observers and were used to calculate the catching rate of turtles over 1000 hooks (CPUE). The American equipment caught more turtles (CPUE = 0,059; N= 103), mainly D. coriacea, while the Chinese longline caught mainly the L. olivacea and presented a CPUE= 0,018 (N= 89). The hooks were most frequently found attached to the mouth of C. caretta, C. mydas, and L. olivacea. The D. coriacea were most frequently caught by hooks externally attached to different parts of their body. There was no significant difference between the hook type catching and most turtles were still alive when released. The results suggest a greater potential of turtle catching by the American method. Besides the statistic tests have showed less interaction between the Chinese equipment and marine turtles, the catches of this fishing technique could have been underestimated due to miscommunication between the onboard observer and the vessel s crew plus the retrieve of the longline during night time
Resumo:
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas) – one of the most abundant large-bodied herbivores in Shark Bay – appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities - and possibly ecosystems - through non-consumptive pathways.
Resumo:
Outbreaks of fibropapillomatosis (FP), a neoplastic infectious disease of marine turtles, have occurred worldwide since the 1980s. Its most likely aetiological agent is a virus, but disease expression depends on external factors, typically associated with altered environments. The scarcity of robust long-term data on disease prevalence has limited interpretations on the impacts of FP on turtle populations. Here we model the dynamics of FP at 2 green turtle foraging aggregations in Puerto Rico, through 18 yr of capture-mark-recapture data (1997−2014). We observed spatiotemporal variation in FP prevalence, potentially modulated via individual site-fidelity. FP ex pression was residency dependent, and FP-free individuals developed tumours after 1.8 ± 0.8 yr (mean ± SD) in the infected area. Recovery from the disease was likely, with complete tumour regression occurring in 2.7 ± 0.7 yr (mean ± SD). FP does not currently seem to be a major threat to marine turtle populations; however, disease prevalence is yet unknown in many areas. Systematic monitoring is highly advisable as human-induced stressors can lead to deviations in host− pathogen relationships and disease virulence. Finally, data collection should be standardized for a global assessment of FP dynamics and impacts.
Resumo:
Kinosternon scorpioides é uma pequena tartaruga semi-aquática, típica de água doce, de distribuição geográfica bastante diversificada, encontrada no estado do Maranhão, onde é denominada de jurará ou muçuã. Sua carne é uma excelente fonte de proteína e a despeito da legislação vigente, é comercializado nas praias e feiras da cidade de São Luís e consumido nos restaurantes sob a forma de farofa servida em casquinha. Os órgãos genitais do macho foram estudados visando fornecer dados morfológicos da própria espécie, que poderão ser utilizados na biologia reprodutiva voltada para ações de preservação em cativeiro. Compõe-se a amostra de 10 machos adultos, obtidos mediante apreensões do IBAMA-MA (Proc. nº 020.12.002400/99-31, licença nº 002/01), os quais foram eutanaziados conforme normas do Comitê de Ética do Curso de Medicina Veterinária, Universidade Estadual do Maranhão. A cavidade celomática foi aberta e os órgãos fixados em solução aquosa de formaldeído 10%, e posteriormente dissecados. Os testículos possuem formato ovóide e coloração amarelo-ouro. Os epidídimos convolutos estavam aderidos dorsalmente à superfície medial dos testículos, terminando em um pequeno ducto deferente. Os ductos deferentes não forma-ram nenhuma ampola distinta, abrindo-se na cloaca. O pênis sulcado, localizado no assoalho da cloaca, estendeu-se até a cauda, composto de raíz, corpo e glande. A morfologia dos órgãos reprodutivos destes animais assemelha-se aos de outras tartarugas, sugerindo uma morfologia conservada entre as tartarugas.
Resumo:
Eimeria lagunculata, Eimeria mammiformis and Eimeria podocnemis n. spp., are described from the faeces of the fresh-water turtle Podocnemis expansa, in Pará State, north Brasil. Oocysts of E. lagunculata are ellipsoidal, 19.2 x 12.8 (17.0-20.7 x 11.8-14.1) mum, shape-index (= length/ width) 1.5 (1.4-1.7). Oocyst wall about 0.5-0.7 mum thick, with a prominent stopper-like micropyle at one pole. No oocyst residuum and no polar body. Sporocysts elongate ellipsoidal, 11.0 x 5.4 (10.4-11.8 x 5.2-6.0) mum, shape-index 2.0 (1.8-2.1): no Stieda body. A compact, ellipsoidal sporocyst residuum lies between the two sporozoites, which possess a posterior and an anterior refractile body. Oocysts of E. mammiformis broadly ellipsoidal, 30.0 x 19.4 (23.0-37.0 x 16.3-21.5) mum, shape-index 1.5 (1.1-1.9). Oocyst wall about 0.7 mum thick, with a prominent micropyle: no oocyst residuum and rarely a single polar body. Sporocysts ellipsoidal, 15.3 x 7.9 (14.8-17.0 x 7.4-9.6) mum, shape-index 2.0 (1.8-2.2), with a tiny Stieda body. Sporocyst residuum bulky, ellipsoidal: sporozoites with two conspicuous refractile bodies. E. podocnemis has broadly ellipsoidal oocysts, 17.0 x 12.8 (14.8-19.2 x 11.8-14.1) mum, shape-index 1.3 (1.1-1.4). Oocyst wall about 0.5-0.7 mum thick, with no micropyle. No oocyst residuum, but always a single polar body. Sporocysts ellipsoidal, 9.7 x 5.2 (8.9-10.4 x 4.4-6.0) mum, shape-index 1.9 (1.6-2.0), with no Stieda body. Sporocyst residuum bulky, ellipsoidal: sporocysts with 2 refractile bodies. Eimeria carinii n. sp., is recorded from the tortoise Geochelone denticulata, also from Pará. Oocyst wall about 1.2 mum thicl. No micropyle. Oocyst residuum limited to a number (about 10-20) of scattered granules: no polar body. Sporocysts broadly ellipsoidal, and with no Stieda body: they measure 8,8 x 7.3 (8.0-9.0 x 7.0-7.5) mum, shape-index 1.2 (1.1-1.3). Sporocyst residuum bulky, spherical to ellipsoidal: sporozoites possess both posterior and anterior refractile bodies.