995 resultados para Chain-end
Resumo:
The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.
Resumo:
Cytoplasmic dynein in filamentous fungi accumulates at microtubule plus-ends near the hyphal tip, which is important for minus-end-directed transport of early endosomes. It was hypothesized that dynein is switched on at the plus-end by cargo association. Here, we show in Aspergillus nidulans that kinesin-1-dependent plus-end localization is not a prerequisite for dynein ATPase activation. First, the Walker A and Walker B mutations in the dynein heavy chain AAA1 domain implicated in blocking different steps of the ATPase cycle cause different effects on dynein localization to microtubules, arguing against the suggestion that ATPase is inactive before arriving at the plus-end. Second, dynein from kinA (kinesin 1) mutant cells has normal ATPase activity despite the absence of dynein plus-end accumulation. In kinA hyphae, dynein localizes along microtubules and does not colocalize with abnormally accumulated early endosomes at the hyphal tip. This is in contrast to the colocalization of dynein and early endosomes in the absence of NUDF/LIS1. However, the Walker B mutation allows dynein to colocalize with the hyphal-tip-accumulated early endosomes in the kinA background. We suggest that the normal ability of dyenin to interact with microtubules as an active minus-end-directed motor demands kinesin-1-mediated plus-end accumulation for effective interactions with early endosomes.
Resumo:
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
Patients with end-stage liver disease often reveal significant protein-energy malnutrition, which may deteriorate after listing for transplantation. Since malnutrition affects post-transplant survival, precise assessment must be an integral part of pre- and post-surgical management. While there is wide agreement that aggressive treatment of nutritional deficiencies is required, strong scientific evidence supporting nutritional therapy is sparse. In practice, oral nutritional supplements are preferred over parenteral nutrition, but enteral tube feeding may be necessary to maintain adequate calorie intake. Protein restriction should be avoided and administration of branched-chain amino acids may help yield a sufficient protein supply. Specific problems such as micronutrient deficiency, fluid balance, cholestasis, encephalopathy, and comorbid conditions need attention in order to optimize patient outcome.
Resumo:
Pork occupies an important place in the diet of the population of Nagaland, one of the North East Indian states. We carried out a pilot study along the pork meat production chain, from live animal to end consumer. The goal was to obtain information about the presence of selected food borne hazards in pork in order to assess the risk deriving from these hazards to the health of the local consumers and make recommendations for improving food safety. A secondary objective was to evaluate the utility of risk-based approaches to food safety in an informal food system. We investigated samples from pigs and pork sourced at slaughter in urban and rural environments, and at retail, to assess a selection of food-borne hazards. In addition, consumer exposure was characterized using information about hygiene and practices related to handling and preparing pork. A qualitative hazard characterization, exposure assessment and hazard characterization for three representative hazards or hazard proxies, namely Enterobacteriaceae, T. solium cysticercosis and antibiotic residues, is presented. Several important potential food-borne pathogens are reported for the first time including Listeria spp. and Brucella suis. This descriptive pilot study is the first risk-based assessment of food safety in Nagaland. We also characterise possible interventions to be addressed by policy makers, and supply data to inform future risk assessments.
Resumo:
Market liberalization in Tanzania has eroded the monopoly of the cooperative unions by allowing private coffee buyers (PCBs) to compete with them on equal footing. Similarly, farmers groups and primary societies are now allowed to sell coffee at auction. Thus, farmers have various options for selling their coffee. Similarly, the coffee industry has experienced large fluctuations in prices and stagnation in production. How do farmers react to these changes? Can and do farmers profit from different market conditions and sell to different traders at the lower end of the value chain, or do they remain with cooperatives or farmers groups? This study was conducted in Mruwia and Mshiri villages in Moshi Rural district. Whereas Mshiri village remains attached to the Kilimanjaro Native Cooperative Union (KNCU), Mruwia has detached from this organization and sells coffee independently. The sample (103) was randomly selected from the coffee farmers in the two villages. Data were collected through surveys, focus group discussions (FGDs), and socio-anthropological methods (participant-observation, biographies, and thematic interviews). Results indicate that the selection of whom to sell coffee depends largely on farmers’ dependence on coffee and prices, other benefits accrued, and whether the initial costs are covered by buyers. Additionally, most respondents did not sell coffee to PCBs. Thus, prices, the institutional infrastructure, and the structure of local communities were important when making decisions about how and with whom to trade.
Resumo:
INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.
Resumo:
Polychlorinated naphthalenes are environmentally relevant compounds that are measured in biota at concentrations in the μg/kg lipid range. Despite their widespread occurrence, literature data on the accumulation and effects of these compounds in aquatic ecosystems are sparsely available. The goal of this study was to gain insights into the biomagnification and effects of 1,2,3,5,7-pentachloronaphthalene (PeCN52) in an experimental food chain consisting of benthic worms and juvenile rainbow trout. Worms were contaminated with PeCN52 by passive dosing from polydimethylsiloxane silicone. The contaminated worms were then used to feed the juvenile rainbow trout at 0.12, 0.25 or 0.50 μg/g fish wet weight/day, and the resulting internal whole-body concentrations of the individual fish were linked to biological responses. A possible involvement of the cellular detoxification system was explored by measuring PeCN52-induced expression of the phase I biotransformation enzyme gene cyp1a1 and the ABC transporter gene abcb1a. At the end of the 28-day study, biomagnification factors were similar for all dietary intake levels with values between 0.5 and 0.7 kg lipid(fish)/kg lipid(worm). The average uptake efficiency of 60% indicated that a high amount of PeCN52 was transferred from the worms to the fish. Internal concentrations of up to 175 mg/kg fish lipid in the highest treatment level did not result in effects on survival, behavior, or growth of the juvenile trout, but were associated with the induction of phase I metabolism which was evident from the significant up-regulation of cyp1a1 expression in the liver. In contrast, no changes were seen in abcb1a transcript levels.
Resumo:
Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.
Resumo:
Although commonly reported in marine and freshwater environments, little is known about the biological sources of long chain alkyl 1,13- and 1,15-diols, and factors controlling their distributions. Here we analyzed the occurrence and distribution of these lipids in a comprehensive set of marine surface sediments and compare their distributions with environmental conditions like sea surface temperature (SST), salinity and nutrient concentrations. Fractional abundances of the C28 1,13-, C30 1,13- and C30 1,15-diols show a strong correlation with SST and based on these results, we propose the Long chain Diol Index (LDI), which expresses the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. The LDI shows a strong linear correlation with SST (LDI = 0.033 × SST + 0.095; R2 = 0.969, n = 162) over a temperature range of -3 to 27 °C. Long chain diol distributions in sediments from the South Atlantic close to the Congo River outflow (West Africa) provided a 43 kyr LDI SST record. This record reflects several known climatic events and shows similarities with an alkenone-derived SST record obtained using the same suite of sediments, both in trend and in terms of absolute SST. This confirms the potential of the LDI as a proxy for palaeo-SST reconstruction.