956 resultados para Central and peripheral chemoreflex
Resumo:
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.
Resumo:
Trypanosoma rangeli is a hemoflagelate parasite that infects domestic and sylvatic animals, as well as man, in Central and South America. T. rangeli has an overlapping distribution with T. cruzi, the etiological agent of Chagas disease, sharing several animal reservoirs and triatomine vectors. We have isolated T. rangeli strains in the State of Santa Catarina, in southern Brazil, which dramatically increased the distribution area of this parasite. This brief review summarizes several studies comparing T. rangeli strains isolated in Santa Catarina with others isolated in Colombia, Honduras and Venezuela. The different methods used include indirect immunofluorescence and western blot assays, lectin agglutination, isoenzyme electrophoresis and random amplified polymorphic DNA analysis, triatomine susceptibility, in vitro cell infection assays, and mini-exon gene analysis.
Resumo:
AIMS: This article explores the structures of relational resources that individuals with psychiatric disorders get from their family configurations using the concept of social capital. METHODS: The research is based on a sample of 54 individuals with psychiatric disorders and behavioural problems, and a comparison sample of 54 individuals without a clinical record matched to the clinical respondents for age and sex. Standard measures of social capital from social network methods are applied on family configurations of individuals from both samples. Differences are tested by variance analysis. RESULTS: Structures of family resources available to individuals with psychiatric disorders are distinct. Individuals with psychiatric disorders perceive themselves as less central in their family configurations and less connected to their family members. Their significant family members are perceived as less connected with each other. As a whole, their family configurations are smaller and do not include spouses or partners. Therefore bridging and bonding social capitals are not readily available for them. CONCLUSION: As family configurations of individuals with psychiatric disorders provide fewer relational resources than other families, they are not able to deal with social integration of individuals with psychiatric disorders on their own.
Resumo:
Apart from several growth factors which play a crucial role in the survival and development of the central and peripheral nervous systems, thyroid hormones can affect different processes involved in the differentiation and maturation of neurons. The present study was initiated to determine whether triiodothyronine (T3) affects the survival and neurite outgrowth of primary sensory neurons in vitro. Dorsal root ganglia (DRG) from 19-day-old embryos or newborn rats were plated in explant or dissociated cell cultures. The effect of T3 on neuron survival was tested, either in mixed DRG cell cultures, where neurons grow with non-neuronal cells, or in neuron-enriched cultures where non-neuronal cells were eliminated at the outset. T3, in physiological concentrations, promoted the growth of neurons in mixed DRG cell cultures as well as in neuron-enriched cultures without added nerve growth factor (NGF). Since neuron survival in neuron-enriched cultures cannot be promoted by endogenous neurotrophic factors synthesized by non-neuronal cells, the increased number of surviving neurons was due to a direct trophic action of T3. Another trophic effect was revealed in this study: T3 sustained the neurite outgrowth of sensory neurons in DRG explants. The stimulatory effect of T3 on nerve fibre outgrowth was considerably reduced when non-neuronal cell proliferation was inhibited by the antimitotic agent cytosine arabinoside, and was completely suppressed when the great majority of non-neuronal cells were eliminated in neuron-enriched cultures. These results indicate that the stimulatory effect of T3 on neurite outgrowth is mediated through non-neuronal cells. It is conceivable that T3 up-regulates Schwann cell expression of a neurotrophic factor, which in turn stimulates axon growth of sensory neurons. Together, these results demonstrate that T3 promotes both survival and neurite outgrowth of primary sensory neurons in DRG cell cultures. The trophic actions of T3 on neuron survival and neurite outgrowth operate under two different pathways.
Resumo:
BACKGROUND: Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which increased apoptosis and decreased apoptotic cells removal has been described as most relevant in the pathogenesis. Long-chain acyl-coenzyme A synthetases (ACSLs) have been involved in the immunological dysfunction of mouse models of lupus-like autoimmunity and apoptosis in different in vitro cell systems. The aim of this work was to assess among the ACSL isoforms the involvement of ACSL2, ACSL4 and ACSL5 in SLE pathogenesis. FINDINGS: With this end, we determined the ACSL2, ACSL4 and ACSL5 transcript levels in peripheral blood mononuclear cells (PBMCs) of 45 SLE patients and 49 healthy controls by quantitative real time-PCR (q-PCR). We found that patients with SLE had higher ACSL5 transcript levels than healthy controls [median (range), healthy controls =16.5 (12.3-18.0) vs. SLE = 26.5 (17.8-41.7), P = 3.9x10 E-5] but no differences were found for ACSL2 and ACSL4. In in vitro experiments, ACSL5 mRNA expression was greatly increased when inducing apoptosis in Jurkat T cells and PBMCs by Phorbol-Myristate-Acetate plus Ionomycin (PMA+Io). On the other hand, short interference RNA (siRNA)-mediated silencing of ACSL5 decreased induced apoptosis in Jurkat T cells up to the control levels as well as decreased mRNA expression of FAS, FASLG and TNF. CONCLUSIONS: These findings indicate that ACSL5 may play a role in the apoptosis that takes place in SLE. Our results point to ACSL5 as a potential novel functional marker of pathogenesis and a possible therapeutic target in SLE
Resumo:
Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.
Resumo:
In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.
Resumo:
To monitor recent trends in oral and pharyngeal cancer mortality in 38 European countries, we analyzed data provided by the World Health Organization over the period 1975-2004. Joinpoint analysis was used to identify significant changes in trends. In the European Union (EU), male mortality rates rose by 2.1% per year between 1975 and 1984, by 1.0% between 1984 and 1993, and declined by 1.3% between 1993 and 2004, to reach an overall age-standardized rate of 6.1/100,000 in 2000-2004. Mortality rates were much lower in women, and the rate in the EU rose by 0.9% per year up to 2000, and levelled off to 1.1/100,000 in 2000-2004. In France and Italy - which had the highest rates in the past - male rates have steadily declined during the last two decades (annual percent change, APC=-4.8% in 1998-2004 in France, and -2.6% in 1986-2003 in Italy). Persisting rises were, however, observed in several central and eastern European countries, with exceedingly high rates in Hungary (21.1/100,000; APC=6.9% in 1975-1993 and 1.4% in 1993-2004) and Slovakia (16.9/100,000; APC=0.14% in 1992-2004). In middle aged (35 to 64) men, oral and pharyngeal cancer mortality rates in Hungary (55.2/100,000) and Slovakia (40.8/100,000) were comparable to lung cancer rates in several major European countries. The highest rates for women were in Hungary (3.3/100,000; APC=4.7% in 1975-2004) and Denmark (1.6/100,000; APC=1.3% in 1975-2001). Oral and pharyngeal cancer mortality essentially reflects the different patterns in tobacco smoking and alcohol drinking, including drinking patterns and type of alcohol in central Europe. (c) 2009 UICC.
Resumo:
INTRODUCTION: The Neuromodulation Appropriateness Consensus Committee (NACC) of the International Neuromodulation Society (INS) evaluated evidence regarding the safety and efficacy of neurostimulation to treat chronic pain, chronic critical limb ischemia, and refractory angina and recommended appropriate clinical applications. METHODS: The NACC used literature reviews, expert opinion, clinical experience, and individual research. Authors consulted the Practice Parameters for the Use of Spinal Cord Stimulation in the Treatment of Neuropathic Pain (2006), systematic reviews (1984 to 2013), and prospective and randomized controlled trials (2005 to 2013) identified through PubMed, EMBASE, and Google Scholar. RESULTS: Neurostimulation is relatively safe because of its minimally invasive and reversible characteristics. Comparison with medical management is difficult, as patients considered for neurostimulation have failed conservative management. Unlike alternative therapies, neurostimulation is not associated with medication-related side effects and has enduring effect. Device-related complications are not uncommon; however, the incidence is becoming less frequent as technology progresses and surgical skills improve. Randomized controlled studies support the efficacy of spinal cord stimulation in treating failed back surgery syndrome and complex regional pain syndrome. Similar studies of neurostimulation for peripheral neuropathic pain, postamputation pain, postherpetic neuralgia, and other causes of nerve injury are needed. International guidelines recommend spinal cord stimulation to treat refractory angina; other indications, such as congestive heart failure, are being investigated. CONCLUSIONS: Appropriate neurostimulation is safe and effective in some chronic pain conditions. Technological refinements and clinical evidence will continue to expand its use. The NACC seeks to facilitate the efficacy and safety of neurostimulation.
Resumo:
Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.
Resumo:
Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.
Resumo:
The biochemical mechanisms controlling the diverse functional outcomes of human central memory (CM) and effector memory (EM) T-cell responses triggered through the T-cell receptor (TCR) remain poorly understood. We implemented reverse phase protein arrays to profile TCR signaling components in human CD8 and CD4 memory T-cell subsets isolated ex vivo. As compared with CD4 CM cells, EM cells express statistically significant increased amounts of SLP-76 and reduced levels of c-Cbl, Syk, Fyn, and LAT. Moreover, in EM cells reduced expression of negative regulator c-Cbl correlates with expression of c-Cbl kinases (Syk and Fyn), PI3K, and LAT. Importantly, consistent with reduced expression of c-Cbl, EM cells display a lower functional threshold than CM cells. Increasing c-Cbl content of EM cells to the same level as that of CM cells using cytosolic transduction, we impaired their proliferation and cytokine production. This regulatory mechanism depends primarily on c-Cbl E3 ubiquitin ligase activity as evidenced by the weaker impact of enzymatically deficient c-Cbl C381A mutant on EM cell functions. Our study reports c-Cbl as a critical regulator of the functional responses of memory T cell subsets and identifies for the first time in humans a mechanism controlling the functional heterogeneity of memory CD4 cells.
Resumo:
Aging is a multidimensional process of physical, psychological, and social changes. Understanding how we sleep and how this dynamic process evolves across life span will help to identify normal developmental aspects of sleep over time and to create strategies to increase awareness of sleep disturbances and their early management. In normal sleepers from HypnoLaus cohort, we evaluated the effects of age and gender on both subjective and objective sleep measurements. Our results indicate that normal aging is not accompanied by sleep complaints, and when they exist suggest the presence of underlying comorbidities. Polysomnographic data revealed that slow wave sleep was more affected with age in men, and age affected differently NREM and REM spectral power densities. Both sleep structure and spectral analysis profiles may constitute standards to delineate pathological changes in sleep, both for aging women and men. Another important aspect in the management of sleep and its disorders is a detailed characterization of sleep-inducing medications. Gamma-hydroxybutyrate (GHB) is an inhibitory neurotransmitter derivative of GABA, but its mode of action and the range of effects are not well understood. Several properties, as growth hormone stimulation in humans and the development of weight loss in treated patients suggest an unexplored metabolic effect. In different experiments we assessed the effects of acute, short term and chronic GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism in C57BL/6J, GABAB knock-out and obese (ob/ob) mice. We showed that GHB treatment affects weight gain in C57BL/6J and GABAB knock-out mice. Metabolomic analysis indicated large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use. -- Le vieillissement est un processus multidimensionnel accompagné par de multiples changements dans les domaines physique, psychologique et social. Comprendre comment nous dormons et comment ce processus dynamique évolue sur la durée de vie nous aidera à identifier les aspects normaux du développement du sommeil au fil du temps, et à créer des stratégies pour accroître la connaissance et compréhension des troubles du sommeil et leur prise en charge précoce. Chez les sujets normaux de la cohorte HypnoLaus nous avons évalué les effets de l'âge et du sexe sur les mesures subjectives et objectives du sommeil. Nos résultats indiquent que le vieillissement normal ne s'accompagne pas de troubles du sommeil, et quand ils existent ceux-ci suggèrent la présence de comorbidités sous-jacentes. Les données polysomnographiques ont révélé que le sommeil profond était plus affecté avec l'âge chez les hommes. De plus, nous avons montré comment l'âge modifie la composition spectrale du sommeil lent et paradoxal. La structure du sommeil et les profils d'analyse spectrale peuvent donc constituer des standards permettant de définir les changements pathologiques du sommeil chez les personnes âgées. Parmi les aspects importants de la gestion du sommeil et de ses troubles, la caractérisation détaillée des médicaments hypnotiques utilisés est essentielle. L'acide gamma-hydroxybutyrique (GHB) est un acide gras à courte chaîne dérivé du GABA, principal neurotransmetteur inhibiteur du cerveau, mais son mode d'action et tous ses effets sont toujours largement méconnus. Plusieurs propriétés, comme la stimulation de la sécrétion de l'hormone de croissance chez l'homme et le développement d'une perte de poids chez les patients traités suggèrent un effet métabolique inexploré. Dans différentes expériences, nous avons évalué les effets d'une exposition aiguë, à court terme et chronique de GHB sur les processus biochimiques centraux (cortex cérébral) et périphériques (foie) impliqués dans le métabolisme du médicament. Nous avons aussi évalué les effets du médicament sur le métabolisme des souris C57BL/6J, GABAB KO et obèses (ob/ob). Nos résultats ont montré que le GHB diminue le gain de poids chez les souris C57BL/6J et GABAB KO. L'analyse métabolomique a indiqué des changements importants induits par GHB au niveau central et périphérique, et ces effets sont importants pour son utilisation thérapeutique.
Resumo:
Le répertoire cellulaire Τ a pour but d'être tolérant aux antigènes du soi afin d'éviter l'induction de maladies autoimmunes. C'est pourquoi les lymphocytes Τ autoréactifs sont éliminés dans le thymus lors de leur développement par le processus de sélection négative. La plupart des recherches étudient les lymphocytes Τ de haute avidité. Ces lymphocytes Τ de haute avidité sont très sensibles et réagissent fortement à un antigène du soi. En conséquence, ces cellules induisent le développement de maladies autoimmunes lorsqu'elles ciblent des organes exprimant l'antigène du soi. Plusieurs études ont montré que les lymphocytes Τ qui réagissent faiblement aux antigènes spécifiques à un tissu, nommé lymphocytes Τ de faible avidité, peuvent contourner les mécanismes de tolérance centrale et périphérique. J'ai utilisé des souris Rip-mOva qui expriment l'Ovalbumine comme antigène du soi spécifique à un tissu. Dans ces souris transgéniques Rip-mOva, les lymphocytes Τ de faible avidité survivent à la sélection négative. Une fois stimulés à la périphérie, ces lymphocytes Τ CD8+ de faible avidité ont la capacité d'infiltrer les organes qui expriment l'antigène du soi chez les souris Rip-mOva et peuvent induire une destruction tissulaire. L'objectif principal de mon projet de thèse était de comprendre les caractéristiques phénotypiques et fonctionnelles de ces lymphocytes Τ dans un état d'équilibre et dans un contexte infectieux. Pour étudier ces cellules dans un modèle murin bien défini, nous avons généré des souris exprimant un récepteur de cellule Τ transgénique appelé OT-3. Ces souris transgéniques OT-3 ont des lymphocytes Τ CD8+ de faible avidité spécifiques à l'épitope SIINFEKL de l'antigène Ovalbumine. Nous avons démontré qu'un grand nombre de lymphocytes Τ CD8+ OT-3 ne sont pas éliminés lors de la sélection négative dans le thymus après avoir rencontré l'antigène du soi. Par conséquent, les lymphocytes Τ OT-3 de faible avidité sont présents dans une fenêtre de sélection comprise entre la sélection positive et négative. Cette limite se définie comme le seuil d'affinité et est impliquée dans l'échappement de certains lymphocytes Τ OT- 3 autoréactifs. A la périphérie, ces cellules sont capables d'induire une autoimmunité après stimulation au cours d'une infection, ce qui nous permet de les définir comme étant non tolérante et non dans un état anergique à la périphérie. Nous avons également étudié le seuil d'activation des lymphocytes Τ OT-3 à faible avidité à la périphérie et avons constaté que des ligands peptidiques plus faibles que l'épitope natif SIINFEKL sont capables de les activer au cours d'une infection ainsi que de les différencier en lymphocytes Τ effecteurs et mémoires. Les données illustrent une déficience lors de la sélection négative dans le thymus de lymphocytes Τ CD8+ autoréactifs de faible avidité contre un antigène du soi spécifique à tissu et montrent que ces cellules sont entièrement compétentes lors d'une infection. - The diverse Τ cell repertoire needs to be tolerant to self-antigen to avoid the induction of autoimmunity. This is why autoreactive developing Τ cells are deleted in the thymus. The deletion of self-reactive Τ cells occurs through the process of negative selection. Most studies investigated high avidity Τ cells. These high avidity Τ cells are very sensitive and strongly react to a self-antigen. As a consequence, these cells induce the development of autoimmunity when they target organs which express the self-antigen. High avidity autoreactive CD8+ Τ cells are deleted in the thymus. However, several studies have shown Τ cells that weakly respond to tissue-restricted antigen, referred to as low avidity Τ cells, can bypass central and peripheral tolerance mechanisms. I used Rip-mOva mice that expressed Ovalbumin as a neo self-antigen in a tissue-restricted fashion. In these transgenic Rip-mOva mice low avidity CD8+ Τ cells survive negative selection. Upon stimulation in the periphery, these low avidity CD8+ Τ cells have the ability to infiltrate organs that express the self-antigen in the Rip-mOva mice and can also induce the destruction of the tissue. The major aim of my PhD project was to understand the phenotypic and functionality characteristics of these Τ cells in a steady-state condition and in a context of an infection. To study these cells in a well-defined mouse model, we generated OT-3 Τ cell receptor transgenic mice that express low avidity CD8+ Τ cells that are specific for the SIINFEKL epitope of the Ovalbumin antigen. We have been able to demonstrate that a large number of OT-3 CD8+ Τ cells survive negative selection in the thymus after encountering the self-antigen. Thus, low avidity OT-3 Τ cells are present in a window of selection comprised between positive and negative selection. This boundary defined as the affinity threshold is involved in the escape of some autoreactive low avidity OT-3 Τ cells. Once they circulate in the periphery, they are able to induce autoimmunity after stimulation during an infection, allowing us to allocate these cells as being non-tolerant and not in an anergic state in the periphery. We have also looked at the threshold of activation of low avidity OT-3 CD8+ Τ cells in the periphery and found that peptide ligands that are weaker than the native SIINFEKL epitope are able to activate OT-3 Τ cells during an infection and to differentiate them into effector and memory Τ cells. The data illustrate the impairment of negatively selecting low avidity autoreactive CD8+ Τ cells against a tissue-restricted antigen in the thymus and shows that these cells are fully competent upon an infection.