930 resultados para Cemeteries - Environmental impact
Resumo:
[EN] Comparative of the environmental impacts of a printed newspaper for different impacts categories using the tool of Life Cycle Assessment. The study describes the methodology, the different phases using the usual technology by coldset-offset comparing to the new digital-inkjet printing.
Resumo:
The high energy consumption caused by the building sector and the continuous growth and ageing of the existing housing stock show the importance of housing renovation to improve the quality of the environment. This research compares the environmental performance of flat roof systems (insulation, roofing membrane and covering layer) using Life Cycle Assessment (LCA). The aim is to give indications on how to improve the environmental performance of housing. This research uses a reference building located in the Netherlands and considers environmental impacts related to materials, energy consumption for heating and maintenance activities. It indicates impact scores for each material taking into account interconnections between the layers and between the different parts of the life cycle. It compares the environmental and economic performances of PV panels and of different materials and thermal resistance values for the insulation. These comparisons show that PV panels are convenient from an environmental and economic point of view. The same is true for the insulation layer, especially for materials as PIR (polyisocyanurate) and EPS (expanded polystyrene). It shows that energy consumption for heating causes a larger share of impact scores than production of the materials and maintenance activities. The insulation also causes larger impact scores comparing to roofing membrane and covering layer. The results show which materials are preferable for flat roof renovation and what causes the largest shares of impact. This gives indication to the roofers and to other stakeholders about how to reduce the environmental impact of the existing housing stock.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
The current work has for object the improvement and the maintenance of the School of Engineering and Architecture in Via Terracini 28 (Bologna), with the prospective to maximize the operative efficiency reducing to the minimum the environmental impact and the costs. In order to realize this work the LEED certification has been used. LEED (Leadership in Energy and Environmental Design) is a certification system of the buildings. It was born in United States by the U.S. Green Building Council (USGBC)
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
Resumo:
This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.
Resumo:
Public participation is an integral part of Environmental Impact Assessment (EIA), and as such, has been incorporated into regulatory norms. Assessment of the effectiveness of public participation has remained elusive however. This is partly due to the difficulty in identifying appropriate effectiveness criteria. This research uses Q methodology to discover and analyze stakeholder's social perspectives of the effectiveness of EIAs in the Western Cape, South Africa. It considers two case studies (Main Road and Saldanha Bay EIAs) for contextual participant perspectives of the effectiveness based on their experience. It further considers the more general opinion of provincial consent regulator staff at the Department of Environmental Affairs and the Department of Planning (DEA&DP). Two main themes of investigation are drawn from the South African National Environmental Management Act imperative for effectiveness: firstly, the participation procedure, and secondly, the stakeholder capabilities necessary for effective participation. Four theoretical frameworks drawn from planning, politics and EIA theory are adapted to public participation and used to triangulate the analysis and discussion of the revealed social perspectives. They consider citizen power in deliberation, Habermas' preconditions for the Ideal Speech Situation (ISS), a Foucauldian perspective of knowledge, power and politics, and a Capabilities Approach to public participation effectiveness. The empirical evidence from this research shows that the capacity and contextual constraints faced by participants demand the legislative imperatives for effective participation set out in the NEMA. The implementation of effective public participation has been shown to be a complex, dynamic and sometimes nebulous practice. The functional level of participant understanding of the process was found to be significantly wide-ranging with consequences of unequal and dissatisfied stakeholder engagements. Furthermore, the considerable variance of stakeholder capabilities in the South African social context, resulted in inequalities in deliberation. The social perspectives revealed significant differences in participant experience in terms of citizen power in deliberation. The ISS preconditions are highly contested in both the Saldanha EIA case study and the DEA&DP social perspectives. Only one Main Road EIA case study social perspective considered Foucault's notion of governmentality as a reality in EIA public participation. The freedom of control of ones environment, based on a Capabilities approach, is a highly contested notion. Although agreed with in principle, all of the social perspectives indicate that contextual and capacity realities constrain its realisation. This research has shown that Q method can be applied to EIA public participation in South Africa and, with the appropriate research or monitoring applications it could serve as a useful feedback tool to inform best practice public participation.
Resumo:
The environmental impact of systems managing large (kg) tritium amount represents a public scrutiny issue for the next coming fusion facilities as ITER and DEMO. Furthermore, potentially new dose limits imposed by international regulations (ICRP) shall impact next coming devices designs and the overall costs of fusion technology deployment. Refined environmental tritium dose impact assessment schemes are then overwhelming. Detailed assessments can be procured from the knowledge of the real boundary conditions of the primary tritium discharge phase into atmosphere (low levels) and into soils. Lagrangian dispersion models using real-time meteorological and topographic data provide a strong refinement. Advance simulation tools are being developed in this sense. The tool integrates a numerical model output records from European Centre for Medium range Weather Forecast (ECMWF) with a lagrangian atmospheric dispersion model (FLEXPART). The composite model ECMWF/FLEXTRA results can be coupled with tritium dose secondary phase pathway assessment tools. Nominal tritium discharge operational reference and selected incidental ITER-like plant systems tritium form source terms have been assumed. The realtime daily data and mesh-refined records together with lagrangian dispersion model approach provide accurate results for doses to population by inhalation or ingestion in the secondary phase
Resumo:
The paper considers short-term releases of tritium (mainly but not only tritium hydride (HT)) to the atmosphere from a potential ITER-like fusion reactor located in the Mediterranean Basin and explores if the short range legal exposure limits are exceeded (both locally and downwind). For this, a coupled Lagrangian ECMWF/FLEXPART model has been used to follow real time releases of tritium. This tool was analyzed for nominal tritium operational conditions under selected incidental conditions to determine resultant local and Western Mediterranean effects, together with hourly observations of wind, to provide a short-range approximation of tritium cloud behavior. Since our results cannot be compared with radiological station measurements of tritium in air, we use the NORMTRI Gaussian model. We demonstrate an overestimation of the sequence of tritium concentrations in the atmosphere, close to the reactor, estimated with this model when compared with ECMWF/FLEXPART results. A Gaussian “mesoscale” qualification tool has been used to validate the ECMWF/FLEXPART for winter 2010/spring 2011 with a database of the HT plumes. It is considered that NORMTRI allows evaluation of tritium-in-air-plume patterns and its contribution to doses.
Resumo:
One of the key scrutiny issues of new coming energy era would be the environmental impact of fusion facilities managing one kg of tritium. The potential change of committed dose regulatory limits together with the implementation of nuclear design principles (As Low as Reasonably achievable - ALARA -, Defense in Depth -D-i-D-) for fusion facilities could strongly impact on the cost of deployment of coming fusion technology. Accurate modeling of environmental tritium transport forms (HT, HTO) for the assessment of fusion facility dosimetric impact in Accidental case appears as of major interest. This paper considers different short-term releases of tritium forms (HT and HTO) to the atmosphere from a potential fusion reactor located in the Mediterranean Basin. This work models in detail the dispersion of tritium forms and dosimetric impact of selected environmental patterns both inland and in-sea using real topography and forecast meteorological data-fields (ECMWF/FLEXPART). We explore specific values of this ratio in different levels and we examine the influence of meteorological conditions in the HTO behavior for 24 hours. For this purpose we have used a tool which consists on a coupled Lagrangian ECMWF/FLEXPART model useful to follow real time releases of tritium at 10, 30 and 60 meters together with hourly observations of wind (and in some cases precipitations) to provide a short-range approximation of tritium cloud behavior. We have assessed inhalation doses. And also HTO/HT ratios in a representative set of cases during winter 2010 and spring 2011 for the 3 air levels.