782 resultados para Cements
Resumo:
The durability of reinforced concrete structures depends, in the main, on the performance of the cover-zone concrete as it is this which protects the steel from the external environment. This paper focusses on the use of discretised electrical property measurements to study depth-related features during both the curing and post-curing period thereby allowing an integrated assessment of the protective properties of the cover region. In the current work, use is made of a small, multi-electrode array embedded within the surface 75mm of concrete specimens. Concretes were manufactured with different European cements (CEM) and water/binder ratios representing mixes which satisfied the minimum requirements for a range of environmental exposure classes including exposure to chlorides. Electrical resistance measurements were taken over a period in excess of 300 days which showed on-going hydration, pozzolanic reaction and pore-structure refinement; in addition, in the post-curing period, when exposed to a cyclic chloride ponding regime, measurements could be used to study the convective zone and ionic enrichment of the surface layer.
Resumo:
The aim of the study was to use a computational and experimental approach to evaluate, compare and predict the ability of calcium phosphate (CaP) and poly (methyl methacrylate) (PMMA) augmentation cements to restore mechanical stability to traumatically fractured vertebrae, following a vertebroplasty procedure. Traumatic fractures (n = 17) were generated in a series of porcine vertebrae using a drop-weight method. The fractured vertebrae were imaged using μCT and tested under axial compression. Twelve of the fractured vertebrae were randomly selected to undergo a vertebroplasty procedure using either a PMMA (n = 6) or a CaP cement variation (n = 6). The specimens were imaged using μCT and re-tested. Finite element models of the fractured and augmented vertebrae were generated from the μCT data and used to compare the effect of fracture void fill with augmented specimen stiffness. Significant increases (p <0.05) in failure load were found for both of the augmented specimen groups compared to the fractured group. The experimental and computational results indicated that neither the CaP cement nor PMMA cement could completely restore the vertebral mechanical behavior to the intact level. The effectiveness of the procedure appeared to be more influenced by the volume of fracture filled rather than by the mechanical properties of the cement itself.
Resumo:
Objectives: The purpose of this investigation was to determine for dispensed multiples (1 through 4) of powder (P) and liquid (L) in hand-mixed dental cement whether: (1) the mean (P/L) ratio (m/m) and (2) the maximum difference in (P/L) ratio is dependent on the number of multiples dispensed. The Null hypotheses were: (a) mean (P/L) ratio is independent of the number of multiples dispensed and (b) maximum difference in (P/L) ratio is independent of the number of multiples dispensed.
Methods: The materials investigated are listed in the Table. The masses of dispensed aliquots of powder and liquid were measured by a single operator (n=10, for multiples 1 through 4) on a 4-place analytical balance. All measurements were made independently and all possible (P/L) ratios calculated for each sample. The effect of multiple dispensations on (P/L) ratios and maximum (P/L) differences was by one-way ANOVA and linear regression, respectively, with the Tukey post-hoc correction for multiple comparisons.MULTIPLE DISPENSEDDISPENSED MU(x1)(x2)(x3)(x4)Zinc phosphateHeraeus12.271(0.691)a13.051(1.269)b13.215(0.824)b13.118(1.149)bFuji IXGC4.209(0.373)a4.085(0.275)b4.095(0.226)b4.095(0.217)bIRMDentsply7.933(0.767)a7.430(0.451)b7.977(0.729)a8.186(0.929)aKetac-Cem3M Espe9.6206(0.613)a9.714(0.523)a9.298(0.314)b9.321(0.292)bMean (SD) powder/liquid ratio (m/m). Superscript letters represent significances (α = 0.05) within each material
Results: Mean (SD) (P/L) ratios are presented in the Table. Null hypothesis (a) is rejected: either (x1) or (x2) dispensation yields a different (P/L) ratio to (x3) or (x4) (p < 0.05). Null hypothesis (b) is rejected: a negative correlation is observed in max (P/L) ratio difference with dispensed multiple for Ketac Cem (p = 0.029).
Conclusion: For hand-mixed dental cements: (1) more consistent (P/L) ratios may be observed with multiple dispensations of powder & liquid; (2) maximum differences in (P/L) ratio may be negatively correlated with dispensation multiple in some materials.
Resumo:
Induction of in vivo responses by implanted biomaterials is of great interest in the medical device field. Calcium phosphate bone cements (CPCs) can potentially promote natural bone remodelling and ingrowth in vivo and, as such are becoming more common place in a range of orthopaedic procedures. However, concerns remain regarding their mechanical and handling properties. Compressive modulus and fracture toughness of CPCs can be improved, without compromising injectability and setting time, through the incorporation of bovine collagen fibres1. Incorporation of marine derived collagen fibres has also yielded similar improvements2. It is hypothesised that, due to its role in bone formation and function, that incorporation of collagen in CPCs will also result in biological benefits.
The biological properties of α-TCP-CPC were largely unchanged by the incorporation of marine derived collagen. However, as a result of significant improvements to the mechanical properties, its incorporation may still result in a suitable alternative to some commercially available bone cements.